(4) Zirconium
This element is often used in the chemical production field, and as implants due to its high chemical resistance and stability.
Answer:
Molecular formula
Explanation:
Molecular formula in the first place is required to understand which compound we have. We then should refer to the periodic table and find the molecular weight for each atom. Adding individual molecular weights together would yield the molar mass of a compound.
Then, dividing the total molar mass of a specific atom by the molar mass of a compound and converting into percentage will provide us with the percentage of that specific atom.
E. g., calculate the percent composition of water:
- molecular formula is
; - calculate its molar mass: [tex]M = 2M_H + M_O = 2\cdot 1.00784 g/mol + 16.00 g/mol = 18.016 g/mol;
- find the percentage of hydrogen: [tex]\omega_H = \frac{2\cdot 1.00784 g/mol}{18.016 g/mol}\cdot 100 \% = 11.19 %;
- find the percentage of oxygen: [tex]\omega_O = \frac{16.00 g/mol}{18.016 g/mol}\cdot 100 \% = 88.81 %.
Answer:
Ammonia gas(an alkaline gas with characteristics of choking or irritating smell) is not liberated when 6mole of HCl is added to the solution instead of 6mole of NaOH, to test for the presence of ammonium ion in the solution
Explanation:
As expected, when testing for ammonium ion in a solution (precisely ammonium salt solution), Sodium Hydroxide (NaOH) is required as the test reagent.
When NaOH is added to the solution, A gas with characteristics of choking or irritating smell is liberated.
This gas turn red litmus paper blue.
This liberated gas is an alkaline gas, which is confirmed as an ammonia gas(NH3).
If HCl is added instead of NaOH, the ammonia gas will not be liberated, which indicates that the test reagent used is wrong.
Above question is incomplete. Complete question is attached below
........................................................................................................................
Solution:
Reduction potential of metal ions are provided below. Higher the value to reduction potential, greater is the tendency of metal to remain in reduced state.
In present case,
reduction potential of Au is maximum, hence it is least prone to undergo oxidation. Hence, it is
least reactive.
On other hand,
reduction potential of Na is minimum, hence it is most prone to undergo oxidation. Hence, it is
most reactive.
The Cascades rain shadow can be described as such: ocean-influenced moist air masses are forced to rise when they meet the tall moun- tains. The rising air cools, condenses, and the moisture falls as precipitation. On the leeward (dry) side of the mountain, the now dry air warms and sinks.