Answer:
Explanation:
<u>1. Equilibrium equation</u>
<u>2. Equilibrium constant</u>
The liquid substances do not appear in the expression of the equilibrium constant.
![k_c=\dfrac{[HBr(g)]^2}{[H_2]}=4.8\times 10^8M](https://tex.z-dn.net/?f=k_c%3D%5Cdfrac%7B%5BHBr%28g%29%5D%5E2%7D%7B%5BH_2%5D%7D%3D4.8%5Ctimes%2010%5E8M)
<u>3. ICE table.</u>
Write the initial, change, equilibrium table:
Molar concentrations:
H₂(g) + Br₂(l) ⇄ 2HBr(g)
I 0.400 0
C - x +2x
E 0.400 - x 2x
<u>4. Substitute into the expression of the equilibrium constant</u>

<u>5. Solve the quadratic equation</u>
- 192,000,000 - 480,000,000x = 4x²
- x² + 120,000,000x - 48,000,000 = 0
Use the quadratic formula:

The only valid solution is x = 0.39999999851M
Thus, the final concentration of H₂(g) is 0.400 - 0.39999999851 ≈ 0.00000000149 ≈ 1.5 × 10⁻⁹M
Answer:
By using renewable energy sources.
Explanation:
You need to satisfy a quota of energy for (whatever country you live in). People do this by using the cheapest way of producing the most energy, the most efficient. Sounds great right? Wrong! It stuffs our atmosphere with harmful gasses like carbon dioxide. You can reduce the use of these fossil fuels by using renewable energy sources such as windmills, watermills, and most notable, solar panels!
Answer:
Redox type
Explanation:
The reaction is:
2Cr + 3Fe(NO₃)₂ → 2Fe + 2Cr(NO₃)₃
2 moles of chromium can react to 3 moles of iron (II) nitrate in order to produce 2 moles of iron and 2 moles of chromium nitrate.
If we see oxidation state, we see that chromium changes from 0 to +3
Iron changed the oxidation state from +2 to 0
Remember that elements at ground state has 0, as oxidation state.
Iron is being reduced while chromium is oxidized. Then, the half reactions are:
Fe²⁺ + 2e⁻ ⇄ Fe (Reduction)
Cr ⇄ Cr³⁺ + 3e⁻ (Oxidation)
When an element is being reduced, while another is being oxidized, we are in prescence of a redox reaction.