Answer:
So the answer would be water based on the evidence shown below.
Explanation:
Mercury is a poor conductor of heat but good for electricity, water is a good conductor of heat but a poor conductor of electricity, wood is a poor conductor of heat and electricity, and glass is probably the worst conductor of heat.
Answer:
Zero
Explanation:
here, the inductive reactance and the capacitive reactance is same, so this is the condition for resonance.
In the condition for resonance,
the circuit and the voltage in the circuit is in the same phase and the impedance of the circuit is minimum which is equal to the resistance of the circuit.
The phase angle is given by

Ф = 0
<span>Actually the second law of thermodynamics would truly gets violated ie, which means that the entrophy changes of the isolated system can never be negative, which covers the above that if heat were to spontaneously flow between any two objects of equal temperature would be fully violated.</span>
Split the operation in two parts. Part A) constant acceleration 58.8m/s^2, Part B) free fall.
Part A)
Height reached, y = a*[t^2] / 2 = 58.8 m/s^2 * [7.00 s]^2 / 2 = 1440.6 m
Now you need the final speed to use it as initial speed of the next part.
Vf = Vo + at = 0 + 58.8m/s^2 * 7.00 s = 411.6 m/s
Part B) Free fall
Maximum height, y max ==> Vf = 0
Vf = Vo - gt ==> t = [Vo - Vf]/g = 411.6 m/s / 9.8 m/s^2 = 42 s
ymax = yo + Vo*t - g[t^2] / 2
ymax = 1440.6 m + 411.6m/s * 42 s - 9.8m/s^2 * [42s]^2 /2
ymax = 1440.6 m + 17287.2m - 8643.6m = 10084.2 m
Answer: ymax = 10084.2m