The law of conservation of mass<span> states that </span>mass<span> in an isolated system is neither created nor destroyed by chemical reactions or physical transformations. According to the </span>law of conservation of mass<span>, the </span>mass<span> of the products in a chemical reaction must equal the </span>mass<span> of the reactants.
</span>
Every chemical equation<span> adheres to the </span>law of conservation of mass<span>, which states that </span>matter<span> cannot be created or destroyed. Therefore, there must be the same number of atoms of each element on each side of a chemical </span>equation.
Answer:
Explanation:
The movement of a body can be analyzed using New's first law. In an inertial frame (without acceleration) every body is kept at rest or moving at constant speed until there is an external force that changes this state
Let's analyze these cases in the framework of this first law
a) If the vehicle is going at constant speed the two bodies (the egg and the hands) do not change movement so he had returned to the hands
b) If the vehicle accelerates the passenger goes faster, but the egg that is not subject to anything does not change the movement, so it falls behind the passenger
c) If the vehicle slows down, the passenger reduces its speed and the distance traveled in time, but the egg that is not attached follows its movement and falls in front of the passenger.
Answer:


Explanation:
When coefficient of friction is approximately zero then we have



here we know that

R = 30 m


now when friction coefficient is 0.30 then we have


now we have




Answer:
The correct answer should be
A. 20 Joules
Explanation:
I'm taking the K12 Unit Test: Energy - Part 1 right now
Answer:
Part A:
Distance=864000 m=864 km
Part B:
Energy Used=ΔE=8638000 Joules
Part C:

Explanation:
Given Data:
v=20m/s
Time =t=12 hours
In Secs:
Time=12*60*60=43200 secs
Solution:
Part A:
Distance = Speed**Time
Distance=v*t
Distance= 20*43200
Distance=864000 m=864 km
Part B:
Energy Used=ΔE= Energy Required-Kinetic Energy of swans
Energy Required to move= Power Required*time
Energy Required to move=200*43200=8640000 Joules
Kinetic Energy=

Energy Used=ΔE=8640000 -2000
Energy Used=ΔE=8638000 Joules
Part C:
Fraction of Mass used=Δm/m
For This first calculate fraction of energy used:
Fraction of energy=ΔE/Energy required to move
ΔE is calculated in part B
Fraction of energy=8638000/8640000
Fraction of energy=0.99977
Kinetic Energy=
Now, the relation between energies ratio and masses is:


