Answer:
You input potential energy into the rubber band system when you stretched the rubber band back. Because it is an elastic system, this is kind of potential energy is specifically called elastic potential energy.
Answer:
The true course:
north of east
The ground speed of the plane: 96.68 m/s
Explanation:
Given:
= velocity of wind = 
= velocity of plane in still air = 
Assume:
= resultant velocity of the plane
= direction of the plane with the east
Since the resultant is the vector addition of all the vectors. So, the resultant velocity of the plane will be the vector sum of the wind velocity and the plane velocity in still air.

Let us find the direction of this resultant velocity with respect to east direction:

This means the the true course of the plane is in the direction of
north of east.
The ground speed will be the magnitude of the resultant velocity of the plane.

Hence, the ground speed of the plane is 96.68 km/h.
As per the question the mass of the boy is 50 kg.
The boy sits on a chair.
We are asked to calculate the force exerted by the boy on the chair at sea level.
The force exerted by boy on the chair while sitting on it is nothing else except the force of gravity of earth i.e the weight of the body .The direction of that force is vertically downward.
At sea level the acceleration due to gravity g = 9.8 m/s^2
Hence the weight of the boy
[m is the mass of the body]
we have m = 50 kg.
Hence w = 50 kg ×9.8 m/s^2
=490 N kg m/s^2
= 490 N
Here newton [N] is the unit of force.