Yes that is a balaned equation
Answer:
The puck moves a vertical height of 2.6 cm before stopping
Explanation:
As the puck is accelerated by the spring, the kinetic energy of the puck equals the elastic potential energy of the spring.
So, 1/2mv² = 1/2kx² where m = mass of puck = 39.2 g = 0.0392 g, v = velocity of puck, k = spring constant = 59 N/m and x = compression of spring = 1.3 cm = 0.013 cm.
Now, since the puck has an initial velocity, v before it slides up the inclined surface, its loss in kinetic energy equals its gain in potential energy before it stops. So
1/2mv² = mgh where h = vertical height puck moves and g = acceleration due to gravity = 9.8 m/s².
Substituting the kinetic energy of the puck for the potential energy of the spring, we have
1/2kx² = mgh
h = kx²/2mg
= 59 N/m × (0.013 m)²/(0.0392 kg × 9.8 m/s²)
= 0.009971 Nm/0.38416 N
= 0.0259 m
= 2.59 cm
≅ 2.6 cm
So the puck moves a vertical height of 2.6 cm before stopping
(a) The distance of the image formed by the concave mirror is 19.1 cm.
(b) The image formed is diminished and real.
<h3>
Image distance </h3>
The distance of the image formed by the concave mirror is calculated as follows;
1/f = 1/v + 1/u
1/v = 1/f - 1/u
1/v = 1/15 - 1/70
1/v = 0.05238
v = 1/0.05238
v = 19.1 cm
The image distance is smaller than object distance, thus the image formed is diminished and real.
Learn more about concave mirror here: brainly.com/question/13164847
#SPJ1
The answer is C.
The Kinetic energy which was exerted and experience pulling the string of a bow is kept as a potential energy at the end of the arrow in contact with the string. Once release from aim at stationary position the potential energy is again transformed.