1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jenyasd209 [6]
2 years ago
12

A south-facing collector at latitude 40◦ is tipped up at an angle equal to its latitude. Compute the following insolations for J

anuary 1st at solar noon:
a. The direct beam insolation normal to the sun’s rays.

b. Beam insolation on the collector.

c. Diffuse radiation on the collector.

d. Reflected radiation on the collector with ground reflectivity 0.2.
Engineering
1 answer:
BartSMP [9]2 years ago
3 0

Answer:

Explanation:

(c). looking for the radiation of the collector is given thus

C = 0.095 + 0.04 sin [360/365(n-100)] = 0.095 + 0.04 sin [360/365(1-100)]

C = 0.05535

∴ Diffuse radiation of the collector Idc = C*Ib + (1+cosσ/2)  

Idc = 0.5535 * 908.7 (1+cos40/ 2) = 44.41 W/m²

Idc = 44.41 W/m²

You might be interested in
What is a combination circuit? A combination circuit:
Anon25 [30]

Answer:

Combination circuit; The basic strategy for the analysis of combination circuits involves using the meaning of equivalent resistance for parallel branches to transform the combination circuit into a series circuit.

Example:

The use of both series and parallel connections within the same circuit. In this case, light bulbs A and B are connected by parallel connections and light bulbs C and D are connected by series connections. This is an example of a combination circuit.

7 0
2 years ago
Plot the function for . Notice that the function has two vertical asymptotes. Plot the function by dividing the domain of x into
elena-s [515]
This is a very very difficult one for me, let me get back to you with the proper answer.
8 0
3 years ago
What is the effect of the workpiece specific cutting energy on the cutting forces, and why?
ella [17]

Explanation:

Specific cutting energy:

   It the ratio of power required to cut the material to metal removal rate of material.If we take the force required to cut the material is F and velocity of cutting tool is V then cutting power will be the product of force and the cutting tool velocity.

Power P = F x V

Lets take the metal removal rate =MRR

Then the specific energy will be

    sp=\dfrac{F\times V}{MRR}

If we consider that metal removal rate and cutting tool velocity is constant then when we increases the cutting force then specific energy will also increase.

8 0
3 years ago
For a cylindrical annulus whose inner and outer surfaces are maintained at 30 ºC and 40 ºC, respectively, a heat flux sensor mea
miskamm [114]

Answer:

k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

where r_1 and r_2 be the inner radius, outer radius of the annalus.

Explanation:

Let r_1, r_2 and L be the inner radius, outer radius and length of the given annulus.

Temperatures at the inner surface, T_1=30^{\circ}C\\ and at the outer surface, T_2=40^{\circ}C.

Let q be the rate of heat transfer at the steady-state.

Given that, the heat flux at r=3cm=0.03m is

40 W/m^2.

\Rightarrow \frac{q}{(2\pi\times0.03\times L)}=40

\Rightarrow q=2.4\pi L \;W

This heat transfer is same for any radial position in the annalus.

Here, heat transfer is taking placfenly in radial direction, so this is case of one dimentional conduction, hence Fourier's law of conduction is applicable.

Now, according to Fourier's law:

q=-kA\frac{dT}{dr}\;\cdots(i)

where,

K=Thermal conductivity of the material.

T= temperature at any radial distance r.

A=Area through which heat transfer is taking place.

Here, A=2\pi rL\;\cdots(ii)

Variation of temperature w.r.t the radius of the annalus is

\frac {T-T_1}{T_2-T_1}=\frac{\ln(r/r_1)}{\ln(r_2/r_1)}

\Rightarrow \frac{dT}{dr}=\frac{T_2-T_1}{\ln(r_2/r_1)}\times \frac{1}{r}\;\cdots(iii)

Putting the values from the equations (ii) and (iii) in the equation (i), we have

q=\frac{2\pi kL(T_1-T_2)}{\LN(R_2/2_1)}

\Rightarrow k= \frac{q\ln(r_2/r_1)}{2\pi L(T_2-T_1)}

\Rightarrow k=\frac{(2.4\pi L)\ln(r_2/r_1)}{2\pi L(10)} [as q=2.4\pi L, and T_2-T_1=10 ^{\circ}C]

\Rightarrow k=0.12\ln(r_2/r_1)\frac {W}{ m^{\circ} C}

This is the required expression of k. By putting the value of inner and outer radii, the thermal conductivity of the material can be determined.

7 0
3 years ago
When does the vc-turbo engine use lower compression ratios?.
Veronika [31]

Answer:

Explanation:

The VC-T engine (for "variable compression, turbocharged") can adjust its compression ratio between 8:1 and 14:1 on the fly, offering high-compression efficiency under light loads and the low compression needed for turbocharged power under hard acceleration.

7 0
2 years ago
Other questions:
  • In order to avoid slipping in the shop, your footwear should __
    10·2 answers
  • I need help!!! Because this is due
    14·2 answers
  • What is flow energy? Do fluids at rest possess any flow energy?
    13·1 answer
  • How to identify this fossil
    9·1 answer
  • Write the following statements as Prolog clauses, in the order given: If it is raining or snowing, then there is precipitation.
    15·1 answer
  • When CO2 rises, temperature rises. Why do you think this is?
    15·1 answer
  • Oliver is designing a new children’s slide to increase the speed at which a child can descend. His first design involved steel b
    15·1 answer
  • Compare the temperature dependence of Nabarro-Herring and Coble creep. Which is more temperature-sensitive
    15·1 answer
  • Select the correct answer
    15·1 answer
  • 9. A piece of Cherry wood is 5/4 x 4" X 4'<br> What is the length in inches?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!