Answer:
The reaction is exothermic.
Yes, released.
The heat released is 4,08x10³ kJ.
Explanation:
For the reaction:
C₃H₈(g) + 5O₂(g) → 3CO₂(g) + 4H₂O(l)
The ΔH is -2220 kJ, As ΔH is <0, <em>The reaction is exothermic.</em>
As the reaction is exothermic, the heat of the reaction will be <em>released.</em>
The heat released in 81,0g is:
81,0g C₃H₈×
×
= <em>4,08x10³ kJ</em>
<em>-Using molar mass of C₃H₈ to convert mass to moles and knowing that there are released 2220 kJ per mole of C₃H₈-</em>
I hope it helps!
The molarity of Barium Hydroxide is 0.289 M.
<u>Explanation:</u>
We have to write the balanced equation as,
Ba(OH)₂ + 2 HNO₃ → Ba(NO₃)₂ + 2 H₂O
We need 2 moles of nitric acid to react with a mole of Barium hydroxide, so we can write the law of volumetric analysis as,
V1M1 = 2 V2M2
Here V1 and M1 are the volume and molarity of nitric acid
V2 and M2 are the volume and molarity of Barium hydroxide.
So the molarity of Ba(OH)₂, can be found as,

= 0.289 M
1 mol of Br = 79.9 g
15.7 g / 79.9 g = 0.196 moles of atoms
Answer:
0.453 moles
Explanation:
The balanced equation for the reaction is:
2Fe(s) + 3O2(g) ==> 2Fe2O3
From the equation, mass of O2 involved = 16 x 2 x 3 = 96g
mass of Fe2O3 involved = [(2x26) + 3 x 16] x 2
= 100g
Therefore 96g of O2 produced 100g of Fe2O3
32.2g of O2 Will produce 100x32.2/96
= 33.54g of Fe2O3
Converting it to mole using number of mole = mass/molar mass
but molar mass of Fe2O3 = 26 + (16 X 3)
= 74g/mole
Therefore number of mole of 33.54g of Fe2O3 = 33.54/74
= 0.453 moles
We know 1 mole of any atom or molecules contains
atom or molecules.
1 mole of HBr i.e 81 gm/mol contains
atom or molecules.
So, mass of
molecules is :

Therefore, mass of
molecules is 1.21 gm .
Hence, this is the required solution.