Answer:
C) Use a battery with more voltage.
Explanation:
The equation for the magnetic field around a coil is given by,
B = μ₀NI
where,
B = Magnetic flux density
μ₀ = permeability
N = number of turns per meter
I = Current in the wire
So when using a higher voltage battery, more current passes through the battery as resistance of the wire remains the same.
Answer:
B = 9.16 10⁻² T
Explanation:
The speed selector is a configuration where the electric and magnetic force has the opposite direction, which for a specific speed cancel
q v B = q E
v = E / B
B = E / v
Let's calculate
B = 4.4 10⁵ / 4.8 10⁶
B = 9.16 10⁻² T
Answer:
The velocity of the truck after this elastic collision is 15.7 m/s
Explanation:
It is given that,
Mass of the car, 
Mass of the truck, 
Initial velocity of the car,
Initial velocity of the truck, u₂ = 0
After the collision the velocity of the car is, v₁ = -11 m/s
Let v₂ is the velocity of the truck after this elastic collision. Using the conservation of momentum as :

So, the velocity of the truck after this elastic collision is 15.7 m/s. Hence, the correct option is (c).
2^4/2^7 = 16/128 = 0.125
(1/2)^3= 0.125
1/8= 0.125
a and f are equivalent
Using the idea of work done under gravity, the height of the building is 187 m.
<h3>Work done in a gravitational field</h3>
We must recall that the work done in a gravitational field is given by; mgh
m= mass
g = acceleration due to gravity
h = height
mass = 60.0 kg
Workdone = 1.15x10^5 J
W = mgh
h = W/mg
h = 1.15x10^5 J/60.0 kg * 9.8 ms-2
h = 187 m
Learn more about work done: brainly.com/question/13662169?