Answer:
cooooooooooooooollllllllll
Explanation:
An object with non-zero mass (even negligible mass is non-zero) will never reach the speed of light. Due to relativistic effects, each "unit" of acceleration becomes less effective at increasing your velocity (relative to some other object, of course) as your relative velocity approaches the speed of light.
And even if there was a way, If you would accelerate to the 99,99% of the speed light in just 1 second, you would experience a G-force of aprox. 30,600,000 g's which is enough to kill you in a few seconds
Answer:
The distance is
=
7
m
Explanation:
Apply the equation of motion
s
(
t
)
=
u
t
+
1
2
a
t
2
The initial velocity is
u
=
0
m
s
−
1
The acceleration is
a
=
2
m
s
−
2
Therefore, when
t
=
3
s
, we get
s
(
3
)
=
0
+
1
2
⋅
2
⋅
3
2
=
9
m
and when
t
=
4
s
s
(
4
)
=
0
+
1
2
⋅
2
⋅
4
2
=
16
m
Therefore,
The distance travelled in the fourth second is
d
=
s
(
4
)
−
s
(
3
)
=
16
−
9
=
7
m
Friction force is when you rub 2 things together and they get warm. Motion, on the other hand, is if your walking along the sidewalk - you hardly get warmer -------
Unless it's a colder day outside and you're walking SO you decide to rub your hands together to get warm, but if you were just walking , its motion and only motion - no friction :):)
A solar eclipse will be visible over a wide area of the north polar region
on Friday, March 20.
England is not in the path of totality, but it's close enough so that a large
part of the sun will be covered, and it will be a spectacular sight.
For Londoners, the eclipse begins Friday morning at 8:25 AM,when the
moon just begins to eat away at the sun's edge. It advances slowly, as more
and more of the sun disappears, and reaches maximum at 9:31 AM. Then
the obscured part of the sun begins to shrink, and the complete disk is
restored by the end of the eclipse at 10:41AM, after a period of 2 hours
16 minutes during which part of the sun appears to be missing.
The catch in observing the eclipse is:
<em><u>YOU MUST NOT LOOK AT THE SUN</u></em>.
Staring at the sun for a period of time can cause permanent damage to
your vision, even though <em><u>you don't feel it while it's happening</u></em>.
This is not a useful place to try and give you complete instructions or
suggestions for observing the sun over a period of hours. Please look
in your local newspaper, or search online for phrases like "safe eclipse
viewing".