The train is traveling 26 meters A second .
Answer:
Explanation:
Given data in question
mean stress = 50 MPa
amplitude stress = 225 MPa
to find out
maximum stress, stress ratio, magnitude of the stress range.
solution
we will find first maximum stress and minimum stress
and stress will be sum of (maximum +minimum stress) / 2
so for stress 50 MPa and 225 MPa
=
+
/ 2
50 =
+
/ 2 ...........1
and
225 =
+
/ 2 ...........2
from eqution 1 and 2 we get maximum and minimum stress
= 275 MPa ............3
and
= -175 MPa ............4
In 2nd part we stress ratio is will compute by ratio of equation 3 and 4
we get ratio =
/
ratio = -175 / 227
ratio = -0.64
now in 3rd part magnitude will calculate by subtracting maximum stress - minimum stress i.e.
magnitude =
-
magnitude = 275 - (-175) = 450 MPa
Answer:
Class of fit:
Interference (Medium Drive Force Fits constitute a special type of Interference Fits and these are the tightest fits where accuracy is important).
Here minimum shaft diameter will be greater than the maximum hole diameter.
Medium Drive Force Fits are FN 2 Fits.
As per standard ANSI B4.1 :
Desired Tolerance: FN 2
Tolerance TZone: H7S6
Max Shaft Diameter: 3.0029
Min Shaft Diameter: 3.0022
Max Hole Diameter:3.0012
Min Hole Diameter: 3.0000
Max Interference: 0.0029
Min Interference: 0.0010
Stress in the shaft and sleeve can be considered as the compressive stress which can be determined using load/interference area.
Design is acceptable If compressive stress induced due to selected dimensions and load is less than compressive strength of the material.
Explanation:
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
Being innovative means doing things differently or doing things that have never been done before. An innovator is someone who has embraced this idea and creates environments in which employees are given the tools and resources to challenge the status quo, push boundaries and achieve growth.
Explanation:
Hope it helps..
But it's a little bit long..
Correct me if I'm wrong..