1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nostrana [21]
3 years ago
11

Match each titration term with its definition.

Engineering
1 answer:
stich3 [128]3 years ago
4 0

Answer:

1) titration

2) titrand

3) equivalence point

4) titrant

5) Burette

6) Indicator

Explanation:

The process of adding a known volume a standard solution to another solution to react with it in order to determine the concentration of the unknown solution is known as titration.

The solution to which another solution of known concentration is added is called the titrand while the solution of known concentration is called the titrant.

A burette is a glassware used to slowly add a known volume of the titrant to the titrand. An indicator shows the point when the reaction is complete by a color change. This is the point when the required amount of one solution has been added to the second solution. It is also called the equivalence point.

You might be interested in
A high molecular weight hydrocarbon gas A is fed continuously into a heated mixed flow reactor (0.1liter) where it is thermally
dimulka [17.4K]

Answer:

Space velocity = 30 hr⁻¹

Explanation:

Space velocity for reactors express how much reactor volume of feed or reactants can be treated per unit time. For example, a space velocity of 3 hr⁻¹ means the reactor can process 3 times its volume per hour.

It is given mathematically as

Space velocity = (volumetric flow rate of the reactants)/(the reactor volume)

Volumetric flowrate of the reeactants

= (molar flow rate)/(concentration)

Molar flowrate of the reactants = 300 millimol/hr

Concentration of the reactants = 100 millimol/liter

Volumetric flowrate of the reactants = (300/100) = 3 liters/hr

Reactor volume = 0.1 liter

Space velocity = (3/0.1) = 30 /hr = 30 hr⁻¹

Hope this Helps!!!

5 0
3 years ago
Miller Indices:
svetlana [45]

Answer:

A) The sketches for the required planes were drawn in the first attachment [1 2 1] and the second attachment [1 2 -4].

B) The closest distance between planes are d₁₂₁=a/√6 and d₁₂₋₄=a/√21 with  lattice constant a.

C) Five posible directions that electrons can move on the surface of a [1 0 0] silicon crystal are: |0 0 1|, |0 1 3|, |0 1 1|, |0 3 1| and |0 0 1|.

Compleated question:

1. Miller Indices:

a. Sketch (on separate plots) the (121) and (12-4) planes for a face centered cubic crystal structure.

b. What are the closest distances between planes (called d₁₂₁ and d₁₂₋₄)?

c. List five possible directions (using the Miller Indices) the electron can move on the surface of a (100) silicon crystal.

Explanation:

A)To draw a plane in a face centered cubic lattice, you have to follow these instructions:

1- the cube has 3 main directions called "a", "b" and "c" (as shown in the first attachment) and the planes has 3 main coeficients shown as [l m n]

2- The coordinates of that plane are written as: π:[1/a₀ 1/b₀ 1/c₀] (if one of the coordinates is 0, for example [1 1 0], c₀ is ∞, therefore that plane never cross the direction c).

3- Identify the points a₀, b₀, and c₀ at the plane that crosses this main directions and point them in the cubic cell.

4- Join the points.

<u>In this case, for [1 2 1]:</u>

l=1=1/a_0 \rightarrow a_0=1

m=2=2/b_0 \rightarrow b_0=0.5

n=1=1/c_0 \rightarrow c_0=1

<u>for </u>[1 2 \overline{4}]<u>:</u>

l=1=1/a_0 \rightarrow a_0=1

m=2=2/b_0 \rightarrow b_0=0.5

n=\overline{4}=-4/c_0 \rightarrow c_0=-0.25

B) The closest distance between planes with the same Miller indices can be calculated as:

With \pi:[l m n] ,the distance is d_{lmn}= \displaystyle \frac{a}{\sqrt{l^2+m^2+n^2}} with lattice constant a.

<u>In this case, for [1 2 1]:</u>

<u />d_{121}= \displaystyle \frac{a}{\sqrt{1^2+2^2+1^2}}=\frac{a}{\sqrt{6}}=0.41a<u />

<u>for </u>[1 2 \overline{4}]<u>:</u>

d_{12\overline{4}}= \displaystyle \frac{a}{\sqrt{1^2+2^2+(-4)^2}}=\frac{a}{\sqrt{21}}=0.22a

C) The possible directions that electrons can move on a surface of a crystallographic plane are the directions contain in that plane that point in the direction between nuclei. In a silicon crystal, an fcc structure, in the plane [1 0 0], we can point in the directions between the nuclei in the vertex (0 0 0) and e nuclei in each other vertex. Also, we can point in the direction between the nuclei in the vertex (0 0 0) and e nuclei in the center of the face of the adjacent crystals above and sideways. Therefore:

dir₁=|0 0 1|

dir₂=|0 0.5 1.5|≡|0 1 3|

dir₃=|0 1 1|

dir₄=|0 1.5 0.5|≡|0 3 1|

dir₅=|0 0 1|

5 0
3 years ago
Your local hospital is considering the following solution options to address the issues of congestion and equipment failures at
kiruha [24]
Jsjhjrhwjdbwjwjrueiworuuwud
4 0
2 years ago
1.8 A water flow of 4.5 slug/s at 60 F enters the condenser of steam turbine and leaves at 140 F. Determine the heat transfer ra
Ann [662]

Answer:

Hr=4.2*10^7\ btu/hr

Explanation:

From the question we are told that:

Water flow Rate R=4.5slug/s=144.78ib/sec

Initial Temperature T_1=60 \textdegree F

Final Temperature  T_2=140 \textdegree F

Let

Specific heat of water \gamma= 1

And

 \triangle T= 140-60

 \triangle T= 80\ Deg.F

Generally the equation for Heat transfer rate of water  H_r is mathematically given by

Heat transfer rate to water= mass flow rate* specific heat* change in temperature

 H_r=R* \gamma*\triangle T

 H_r=144.78*80*1

 H_r=11582.4\ btu/sec

Therefore

 H_r=11582.4\ btu/sec*3600

 Hr=4.2*10^7\  btu/hr

3 0
3 years ago
2. What is the Function of the Camshaft in an Internal Combustion Engine?
mamaluj [8]

Answer:

camshaft, in internal-combustion engines, rotating shaft with attached disks of irregular shape (the cams), which actuate the intake and exhaust valves of the cylinders.

Explanation:

I'm taking an engineering/tech class. I hope this helps! :)

8 0
2 years ago
Other questions:
  • A steel bar is 150 mm square and has a hot-rolled finish. It will be used in a fully reversed bending application. Sut for the s
    7·1 answer
  • A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of
    8·1 answer
  • Practice Problem: Large-Particle CompositesThe mechanical properties of a metal may be improved by incorporating fine particles
    5·1 answer
  • Two AAA-size lithium batteries are connected in series in a flashlight. Each battery has 3.5 volt and 4- Amp-hour capacity. If t
    8·1 answer
  • (a) The lattice constant of GaAs is 5.65 Å. Determine the number of Ga atoms andAs atoms per cm 3 .
    15·1 answer
  • You must yield the right-of-way to all of the following EXCEPT:
    8·1 answer
  • A Carnot heat engine absorbs 235 KW of heat from a heat source and rejects 164 KW to the atmosphere. Determine the thermal effic
    7·1 answer
  • 7 to 1 inch above the stock
    5·1 answer
  • Writing an excellent problem statement will not help guide you through the rest of the process and steer you towards the BEST so
    8·1 answer
  • How can statistical analysis of a dataset inform a design process
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!