The question is incomplete! Complete question along with answer and step by step explanation is provided below.
Question:
Calculate the equivalent capacitance of the three series capacitors in Figure 12-1
a) 0.01 μF
b) 0.58 μF
c) 0.060 μF
d) 0.8 μF
Answer:
The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Explanation:
Please refer to the attached Figure 12-1 where three capacitors are connected in series.
We are asked to find out the equivalent capacitance of this circuit.
Recall that the equivalent capacitance in series is given by

Where C₁, C₂, and C₃ are the individual capacitance connected in series.
C₁ = 0.1 μF
C₂ = 0.22 μF
C₃ = 0.47 μF
So the equivalent capacitance is




Rounding off yields

The equivalent capacitance of the three series capacitors in Figure 12-1 is 0.060 μF
Therefore, the correct option is (c)
Answer:
1.0MG
Explanation:
to solve this problem we use this formula
S₀-S/t = ksx --- (1)
the values have been given as
concentration = S₀ = 250mg
effluent concentration = S= 10mg
value of K = 0.04L/day
x = 3000 mg
when we put these values into this equation,
250-10/t = 0.04x10x3000
240/t = 1200
we cross multiply from this stage
240 = 1200t
t = 240/1200
t = 0.2
remember the question says that 5MGD is required to be treated
so the volume would be
v = 0.2x5
= 1.0 MG
Answer:
809.98°C
Explanation:
STEP ONE: The first step to take in order to solve this particular Question or problem is to find or determine the Biot value.
Biot value = (heat transfer coefficient × length) ÷ thermal conductivity.
Biot value = (220 × 0.1)÷ 110 = 0.2.
Biot value = 0.2.
STEP TWO: Determine the Fourier number. Since the Biot value is greater than 0.1. Tis can be done by making use of the formula below;
Fourier number = thermal diffusivity × time ÷ (length)^2.
Fourier number = (3 × 60 × 33.9 × 10^-6)/( 0.1)^2 = 0.6102.
STEP THREE: This is the last step for the question, here we will be calculating the temperature of the center plane of the brass plate after 3 minutes.
Thus, the temperature of the center plane of the brass plane after 3 minutes = (1.00705) (0.89199) (900- 15) + 15.
= > the temperature of the center plane of the brass plane after 3 minutes = 809.98°C.
Sorry bro people do this22.2 pls