1,000 grams = 1 kilogram
20 grams = 0.02 kilogram
Kinetic energy = (1/2) (mass) x (speed)²
(1/2) (0.02) x (15)² =
(0.01) x (225) = 2.25 joules
In this item, we let x be the rate of the boat in still water and y be the rate of the current.
Upstream. When the boat is going upstream, the speed in still water is deducted by the speed of the current because the boat goes against the water. The distance covered is calculated by multiplying the number of hours and the speed.
(x - y)(3) = 144
Downstream. The speed of the boat going downstream is equal to x + y because the boat goes with the current.
(x + y)(2) = 144
The system of linear equations we can use to solve for x is,
3x - 3y = 144
2x + 2y = 144
We use either elimination or substitution.
We solve for the y of the first equation in terms of x,
y = -(144 - 3x)/3
Substitute this to the second equation,
2x + 2(-1)(144 - 3x)/3 = 144
The value of x from the equation is 60
<em>ANSWER: 60 km/h</em>
Answer:
a) The magnitude of the force is 968 N
b) For a constant speed of 30 m/s, the magnitude of the force is 1,037 N
Explanation:
<em>NOTE: The question b) will be changed in other to give a meaningful answer, because it is the same speed as the original (the gallons would be 1.9, as in the original).</em>
Information given:
d = 106 km = 106,000 m
v1 = 28 m/s
G = 1.9 gal
η = 0.3
Eff = 1.2 x 10^8 J/gal
a) We can express the energy used as the work done. This work has the following expression:

Then, we can derive the magnitude of the force as:

b) We will calculate the force for a speed of 30 m/s.
If the force is proportional to the speed, we have:

They move in a perpendicular direction to the direction of wave motion. Happy to help!