1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
3 years ago
14

Derive an expression for the specific heat difference of a substance whose equation of state is 1 2 ( ) RT a P b b T ν ν ν = − −

+ where a and b are empirical constants.
Engineering
1 answer:
sergij07 [2.7K]3 years ago
7 0

Answer:

Given data:

Equation of the state p=\frac{RT}{v-b}-\frac{a}{v(v+b) T^{1/2} }

Where p = pressure of fluid, pα

T = Temperature of fluid, k

V = Specific volume of fluid m^{3} / k g

R = gas constant , j/k g k

a, b = Constants

Solution:

Specific heat difference, \begin{array}{c}c_{p}-c_{v}=-T\left(\frac{\partial v}{\partial T}\right)^{2} p \\\left(\frac{\partial P}{\partial v}\right)_{r}\end{array}

According to cyclic reaction

\left(\frac{\ dv}{\ dT}\right)_{p}=-\frac{\left(\frac{\ d P}{\ d T}\right)_{v}}{\left(\frac{\ d P}{\ d v}\right)_{v}}

Hence specific heat difference is

c_{p}-c_{v}=\frac{-T\left(\frac{\ d v}{\ d T}\right)_{p}^{2}}{\left(\frac{\ d p}{\ dv}\right)_{v}}

Equation of state, p=\frac{R T}{v-b}-\frac{a}{v(v+b)^{\ 1/2}}

Differentiating the equation of state with respect to temperature at constant volume,

\(\left(\frac{\ d P}{\ d T}\right)_{v}=\frac{R}{v-b}-\frac{1}{2}- \frac{a}{v(v+b)^} T^{\frac{-1}{2}}\)

\begin{aligned}&\left(\frac{\ dP}{\ dT}\right)_{V}=\frac{R}{v-b}+\frac{a}{2 v(v+b) T^{3 / 2}}\end{aligned}

Differentiating the equation of the state with respect to volume at constant temperature.

\(\left(\frac{\ dP}{\ dv}\right)_{\gamma}=+(-1) \times R T(v-b)^{-1-1}+\frac{a}{b T^{1 / 2}}\left(\frac{1}{v^{2}}-\frac{1}{(v+b)^{2}}\right)\)\\\(\left(\frac{\ dP}{\ dv}\right)_{r}=-\frac{R T}{(v-b)^{2}}+\frac{a}{T^{1 / 2}}\left(\frac{2 v+b}{v^{2}(v+b)^{2}}\right)\)

Substituting both eq (3) and eq (4) in eq (2)

We get,

       {cp{} - } c_{v}=\frac{T\left(\frac{R}{v-b}+\frac{a}{2 v(v+b) T^{3 / 2}}\right)^{2}}{\left(\frac{R T}{(v-b)^{2}}-\frac{a(2 v+b)}{T^{1 / 2} v^{2}(v+b)^{2}}\right)}

Specific heat difference equation,

\(c_{p} -c_{v}}=\frac{T\left(\frac{R}{v-b}+\frac{a}{2 v(v+b)^{T}^{3 / 2}}\right)^{2}}{\left(\frac{R T}{(v-b)^{2}}-\frac{a(2 v+b)}{T^{1 / 2} v^{2}(v+b)^{2}}\right)}\)

 

     

You might be interested in
Can u say what’s this
tatuchka [14]

Answer:

particles of a solid object packed together

7 0
2 years ago
Read 2 more answers
Using the state mileage guide table located on the top of each map page you can
Ivenika [448]
C. Route and roadways defined as class I highways
5 0
3 years ago
A thin-walled cylinder of average radius 50 mm, and wall thickness 1.0 mm is of length 500 mm, and is built into a wall at one e
kotykmax [81]

Answer:

0

Explanation:

7 0
3 years ago
The steady-state data listed below are claimed for a power cycle operating between hot and cold reservoirs at 1200K and 400K, re
Anni [7]

Answer:

a) W_cycle = 200 KW , n_th = 33.33 %  , Irreversible

b) W_cycle = 600 KW , n_th = 100 %     , Impossible

c) W_cycle = 400 KW , n_th = 66.67 %  , Reversible

Explanation:

Given:

- The temperatures for hot and cold reservoirs are as follows:

  TL = 400 K

  TH = 1200 K

Find:

For each case W_cycle , n_th ( Thermal Efficiency ) :

(a) QH = 600 kW, QC = 400 kW

(b) QH = 600 kW, QC = 0 kW

(c) QH = 600 kW, QC = 200kW

- Determine whether the cycle operates reversibly, operates irreversibly, or is impossible.

Solution:

- The work done by the cycle is given by first law of thermodynamics:

                                 W_cycle = QH - QC

- For categorization of cycle is given by second law of thermodynamics which states that:

                                 n_th < n_max     ...... irreversible

                                 n_th = n_max     ...... reversible

                                 n_th > n_max     ...... impossible

- Where n_max is the maximum efficiency that could be achieved by a cycle with Hot and cold reservoirs as follows:

                                n_max = 1 - TL / TH = 1 - 400/1200 = 66.67 %

And,                         n_th = W_cycle / QH

a) QH = 600 kW, QC = 400 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 400 = 200 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 200 / 600 = 33.33 %

   - The type of process according to second Law of thermodynamics:

               n_th = 33.333 %                n_max = 66.67 %

                                       n_th < n_max  

      Hence,                Irreversible Process  

b) QH = 600 kW, QC = 0 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 0 = 600 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 600 / 600 = 100 %

   - The type of process according to second Law of thermodynamics:

                 n_th = 100 %                 n_max = 66.67 %

                                     n_th > n_max  

      Hence,               Impossible Process              

c) QH = 600 kW, QC = 200 kW

   - The work done by cycle according to First Law is:

                                W_cycle = 600 - 200 = 400 KW

   - The thermal efficiency of the cycle is given by n_th:

                                n_th = W_cycle / QH

                                n_th = 400 / 600 = 66.67 %

   - The type of process according to second Law of thermodynamics:

               n_th = 66.67 %                 n_max = 66.67 %

                                     n_th = n_max  

      Hence,                Reversible Process

7 0
3 years ago
How to find the voltage(B Aab) in series parallel circuit? ​
Sindrei [870]

Answer:

  Vab ≈ 3.426 V

Explanation:

First of all, it is convenient to find the equivalent parallel resistance of R5 and R6. That will be ...

  R56 = (R5)(R6)/(R5 +R6) = (1000)(1500)/(1000 +1500) = 600

Then we can call V1 the voltage at the top of R2. The voltage at Va is a divider from V1:

  Va = V1·(R4/(R3+R4)) = V1(560/1030) ≈ 0.543689V1

The voltage at Vb is also a divider from V1:

  Vb = V1·(R7+R8)/(R2 +R56 +R7 +R8) = V1(780/1710) ≈ 0.456140V1

The parallel branches containing Va and Vb have an effective resistance of ...

  (1030)(1710)/(1030+1710) = 642.81

That forms a divider with R1 to give V1:

  V1 = (100 V)642.81/(1000 +642.81) ≈ 39.1287 V

The difference Va-Vb is ...

  Vab = (39.1287 V)(0.543689 -0.456140) ≈ 3.426 V

_____

We have done this using parallel resistance and voltage divider calculations. You can also do it using node voltage equations. Using the same definition for V1 as above, we have ...

  (Vs -V1)/R1 +(Vb -V1)/(R56+R2) +(Va-V1)/R3 = 0

  (V1 -Vb)/(R56 +R2) -Vb/(R7+R8) = 0

  (V1 -Va)/R3 -Va/R4 = 0

The solution of interest is the value of Vab, shown in the attachment. It computes as 154200/45013 V ≈ 3.42568 V.

4 0
3 years ago
Other questions:
  • A tank contains 350 liters of fluid in which 50 grams of salt is dissolved. Pure water is then pumped into the tank at a rate of
    8·1 answer
  • Consider 1.0 kg of austenite containing 1.15 wt% C, cooled to below 727C (1341F). (a) What is the proeutectoid phase? (b) How
    14·1 answer
  • If the 1550-lb boom AB, the 190-lb cage BCD, and the 169-lb man have centers of gravity located at points G1, G2 and G3, respect
    11·1 answer
  • What are some possible reasons for the sudden development of the cell theory
    14·1 answer
  • What is not required for current to flow through a conductor
    12·1 answer
  • How are speed and acceleration related
    6·2 answers
  • A wastewater plant discharges a treated effluent (w) with a flow rate of 1.1 m^3/s, 50 mg/L BOD5 and 2 mg/L DO into a river (s)
    14·1 answer
  • A two-phase mixture of water and steam with a quality of 0.63 and T = 300F expands isothermally until only saturated vapor rema
    7·1 answer
  • 1. Springs____________<br> energy when compressed<br> And _________energy when they rebound.
    12·1 answer
  • Please help on two I will give brainiest​
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!