<h2>
Answer:</h2>
<em>1.33 x 10⁻ ⁴ T outwards.</em>
<em></em>
<h2>
Explanation:</h2>
The equation for the magnetic force (F) on a wire whose length is L and carrying a current I in a magnetic field (B) that is uniform is given by;
F = ILB sin θ ---------------------(i)
Where;
θ = angle between the direction of the current and that of the magnetic field.
From the question,
F = 4.0 × 10⁻² N
I = 12A
L = 25m
θ = 90°
<em>Substitute these values into equation(i) and solve as follows;</em>
4.0 × 10⁻² = 12 x 25 x B x sin 90°
4.0 × 10⁻² = 300 x B x 1
4.0 × 10⁻² = 300B
0.04 = 300B
B = 
B = 0.000133
B = 1.33 x 10⁻ ⁴ T
To get the direction of the magnetic field, the right-hand rule is used.
If the right hand fingers are positioned in the correct order specified by the right hand rule, then it would be seen that the magnetic field is directed outwards.
Therefore, the magnitude and direction of the magnetic field at this location is <em>1.33 x 10⁻ ⁴ T outwards.</em>
Metamorphic
Metamorphic rocks are formed under the surface of the earth from the metamorphosis (change) that occurs due to intense heat and pressure (squeezing).
With a ruler and a calculator
Answer:
Density = 1.1839 kg/m³
Mass = 227.3088 kg
Specific Gravity = 0.00118746 kg/m³
Explanation:
Room dimensions are 4 m, 6 m & 8 m. Thus, volume = 4 × 6 × 8 = 192 m³
Now, from tables, density of air at 25°C is 1.1839 kg/m³
Now formula for density is;
ρ = mass(m)/volume(v)
Plugging in the relevant values to give;
1.1839 = m/192
m = 227.3088 kg
Formula for specific gravity of air is;
S.G_air = density of air/density of water
From tables, density of water at 25°C is 997 kg/m³
S.G_air = 1.1839/997 = 0.00118746 kg/m³