The Bohr model proposed that electrons could just have characterized vitality levels thus when rotting back to a lower vitality level discharge a specific measure of vitality. Since the measure of vitality could be changed over to a specific recurrence then particular emanation lines were found in the electromagnetic range. Alternate speculations couldn't clarify the discharge lines.
Answer:
Explanation:
The combustion reaction of Octane is:
To calculate the mass of CO₂ and H₂O produced, we need to know the mass of octane combusted.
We calculate the mass of Octane from the given volume and density, using the following <em>conversion factors</em>:
Now we<u> convert 1.24 gallons to mL</u>:
- 1.24 gallon *
4693.4 mL
We <u>calculate the mass of Octane</u>:
- 4693.4 mL * 0.703 g/mL = 3.30 g Octane
Now we use the <em>stoichiometric ratios</em> and <em>molecular weights</em> to <u>calculate the mass of CO₂ and H₂O</u>:
- CO₂ ⇒ 3.30 g Octane ÷ 114g/mol *
* 44 g/mol = 10.19 g CO₂
- H₂O ⇒ 3.30 g Octane ÷ 114g/mol *
* 18 g/mol = 4.69 g H₂O
Answer:
Ytterbium is a chemical element with the symbol Yb and atomic number 70. It is the fourteenth and penultimate element in the lanthanide
Answer:
0.109 g.
Explanation:
Equation of the reaction:
Na3PO4 + 3HCl --> 3NaCl + H3PO4
Number of moles of HCl = molar concentration × volume
= 0.1 × 0.04
= 0.004 mol.
By stoichiometry, 1 mole of Na3PO4 neutralises 3 moles of HCl. Therefore, number of moles of Na3PO4 = 0.004/3
= 0.0013 mol
Mass of Na3PO4 = molar mass × number of moles
= 0.0013 × 164
= 0.219 g
Since 50% of Na3PO4 was present in the sample. Let 100 g be the total mass of the substance
= 0.219 × 50 g/100 g
= 0.109 g.
Answer:
True
Explanation:
The volume of water displaced by an object completely submerged is its actual volume. It implies that in the container the object create a space of size for itself which is the volume of the object. This approach is used in calculating the density of many irregular solids from their measured masses.