1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Serhud [2]
3 years ago
13

You have accumulated several parking tickets while at school, but you are graduating later in the year and plan to return to you

r home in another jurisdiction. A friend tells you that the authorities in your home jurisdiction will never find out about the tickets when you re-register your car and apply for a new license. What should you do?
Engineering
1 answer:
Elena L [17]3 years ago
3 0

Answer:

pay off the parking tickets

Explanation:

In the scenario being described, the best thing to do would be to pay off the parking tickets. The parking tickets stay under your name, and if they are not paid in time can cause problems down the road. For starters, if they are not paid in time the amount will increase largely which will be harder to pay. If that increased amount is also not paid, then the government will suspend your licence indefinitely which can later lead to higher insurance rates.

You might be interested in
The pressure distribution over a section of a two-dimensional wing at 4 degrees of incidence may be approximated as follows: Upp
Aliun [14]

Answer:

The lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.

Explanation:

The Upper Surface Cp is given as

Cp_u=-0.8 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.8*0.6+0.4*0.1

The Lower Surface Cp is given as

Cp_l=-0.4 *0.6 +0.1 \int\limits^1_{0.6} \, dx =-0.4*0.6+0.4*0.1

The difference of the Cp over the airfoil is given as

\Delta Cp=Cp_l-Cp_u\\\Delta Cp=-0.4*0.6+0.4*0.1-(-0.8*0.6-0.4*0.1)\\\Delta Cp=-0.4*0.6+0.4*0.1+0.8*0.6+0.4*0.1\\\Delta Cp=0.4*0.6+0.4*0.2\\\Delta Cp=0.32

Now the Lift Coefficient is given as

C_L=\Delta C_p cos(\alpha_i)\\C_L=0.32\times cos(4*\frac{\pi}{180})\\C_L=0.3192

Now the coefficient of moment about the leading edge is given as

C_M=-0.3*0.4*0.6-(0.6+\dfrac{0.4}{3})*0.2*0.4\\C_M=-0.1306

So the lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.

5 0
3 years ago
Prove the following languages are nonregular, once using the pumping lemma and once using the Myhill-Nerode theorem. When using
VashaNatasha [74]

Answer:

For any string, we use s = xyz

Explanation:

The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write s = xyz with |xy| ≤ p, such that xyi z is also in the language for every i ≥ 0. For the given language, we can take p = 2.

Here are the cases:

  • Consider any string a i b j c k in the language. If i = 1 or i > 2, we take x = \epsilon   and y = a. If i = 1, we must have j = k and adding any number of a’s still preserves the membership in the language. For i > 2, all strings obtained by pumping y as defined above, have two or more a’s and hence are always in the language.
  • For i = 2, we can take    and y = aa. Since the strings obtained by pumping in this case always have an even number of a’s, they are all in the language.
  • Finally, for the case i = 0, we take x = \epsilon  , and y = b if j > 0 and y = c otherwise. Since strings of the form b j c k are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
8 0
3 years ago
Here, we want to become proficient at changing units so that we can perform calculations as needed. The basic heat transfer equa
netineya [11]

Answer:

9500 kJ; 9000 Btu

Explanation:

Data:

m = 100 lb

T₁ = 25 °C

T₂ = 75 °C

Calculations:

1. Energy in kilojoules

ΔT = 75 °C - 25 °C = 50 °C  = 50 K

m = \text{100 lb} \times \dfrac{\text{1 kg}}{\text{2.205 lb}} \times \dfrac{\text{1000 g}}{\text{1 kg}}= 4.54 \times 10^{4}\text{ g}\\\\\begin{array}{rcl}q & = & mC_{\text{p}}\Delta T\\& = & 4.54 \times 10^{4}\text{ g} \times 4.18 \text{ J$\cdot$K$^{-1}$g$^{-1}$} \times 50 \text{ K}\\ & = & 9.5 \times 10^{6}\text{ J}\\ & = & \textbf{9500 kJ}\\\end{array}

2. Energy in British thermal units

\text{Energy} = \text{9500 kJ} \times \dfrac{\text{1 Btu}}{\text{1.055 kJ}} = \text{9000 Btu}

7 0
3 years ago
Who is/are the founder/founders of transistor? ​
den301095 [7]

Answer:

William Shockley, Walter Houser Brattain and John Bardeen.

Explanation:

It was built in 1947 and they won the novel peace prize in 1956

7 0
3 years ago
Read 2 more answers
Which kind of fracture (ductile or brittle) is associated with each of the two crack propagation mechanisms?
Nina [5.8K]

dutile is the correct answer

6 0
3 years ago
Other questions:
  • A device is needed to accelerate a 3000 lb vehicle into a barrier with constant velocity to test its 5 mph bumpers. The vehicle
    12·2 answers
  • Air is compressed adiabatically from p1 1 bar, T1 300 K to p2 15 bar, v2 0.1227 m3 /kg. The air is then cooled at constant volum
    13·1 answer
  • A pipe of 10 cm inner diameter is used to send crude oil over distance of 400 meters. The entire pipe was laid horizontal. The v
    5·1 answer
  • The slope of a moment diagram is the load. a)-True b)-False
    8·1 answer
  • A refrigerator has a cooling load of 50 kW. It has a COP of 2. It is run by a heat engine which consumes 50 kW of heat to supply
    12·1 answer
  • Thermodynamics deals with the macroscopic properties of materials. Scientists can make quantitative predictions about these macr
    13·1 answer
  • Architects design roads.<br><br> A. True<br> B. False
    9·2 answers
  • What is the chord length of an airplane called?
    14·1 answer
  • Who invented engineering first?​
    12·1 answer
  • You may wonder who the rest goes
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!