Answer:
The lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.
Explanation:
The Upper Surface Cp is given as

The Lower Surface Cp is given as

The difference of the Cp over the airfoil is given as

Now the Lift Coefficient is given as

Now the coefficient of moment about the leading edge is given as

So the lift coefficient is 0.3192 while that of the moment about the leading edge is-0.1306.
Answer:
For any string, we use 
Explanation:
The pumping lemma says that for any string s in the language, with length greater than the pumping length p, we can write s = xyz with |xy| ≤ p, such that xyi z is also in the language for every i ≥ 0. For the given language, we can take p = 2.
Here are the cases:
- Consider any string a i b j c k in the language. If i = 1 or i > 2, we take
and y = a. If i = 1, we must have j = k and adding any number of a’s still preserves the membership in the language. For i > 2, all strings obtained by pumping y as defined above, have two or more a’s and hence are always in the language.
- For i = 2, we can take and y = aa. Since the strings obtained by pumping in this case always have an even number of a’s, they are all in the language.
- Finally, for the case i = 0, we take
, and y = b if j > 0 and y = c otherwise. Since strings of the form b j c k are always in the language, we satisfy the conditions of the pumping lemma in this case as well.
Answer:
9500 kJ; 9000 Btu
Explanation:
Data:
m = 100 lb
T₁ = 25 °C
T₂ = 75 °C
Calculations:
1. Energy in kilojoules
ΔT = 75 °C - 25 °C = 50 °C = 50 K

2. Energy in British thermal units

Answer:
William Shockley, Walter Houser Brattain and John Bardeen.
Explanation:
It was built in 1947 and they won the novel peace prize in 1956