The ball took half of the total time ... 4 seconds ... to reach its highest
point, where it began to fall back down to the point of release.
At its highest point, its velocity changed from upward to downward.
At that instant, its velocity was zero.
The acceleration of gravity is 9.8 m/s². That means that an object that's
acted on only by gravity gains 9.8 m/s of downward speed every second.
-- If the object is falling downward, it moves 9.8 m/s faster every second.
-- If the object is tossed upward, it moves 9.8 m/s slower every second.
The ball took 4 seconds to lose all of its upward speed. So it must have
been thrown upward at (4 x 9.8 m/s) = 39.2 m/s .
(That's about 87.7 mph straight up. Somebody had an amazing pitching arm.)
Boiling points are raised by hydrogen bonds because they make different molecules desire to "attach" to one another, which requires more energy to do so. In water, for instance, the hydrogen proton is in a state that resembles ionization because the connections between oxygen and hydrogen, while covalent, are strongly polar. The oxygen also receives a partial negative charge. Therefore, hydrogen bonds are formed when the electro-positive H in one molecule is strongly electrostatically attracted to the electro-negative O in nearby molecules. Despite being weak links, they are powerful enough to significantly alter the liquid's characteristics.
Thanks!
>> ROR
Answer:
An object is in motion if it changes position relative to a reference point.
Explanation:
I'd say the answer to this on is d.Facts as they are using the temperatures in the graph and the temperatures are not just estimates