Answer:
The limiting reacting is O2
Explanation:
Step 1: data given
Number of moles O2 = 21 moles
Number of moles C6H6O = 4.0 moles
Step 2: The balanced equation
C6H6O + 7O2 → 6CO2 + 3H2O
Step 3: Calculate the limiting reactant
For 1 mol C6H6O we need 7 moles O2 to produce 6 moles CO2 and 3 moles H2O
O2 is the limiting reactant. It will completely be consumed (21 moles).
C6H6O is in excess.
For 7 moles O2 we need 1 mol C6H6O
For 21 moles O2 we'll need 21/7 = 3 moles C6H6O
There will remain 4.0 - 3.0 = 1 mol C6H6O
Step 4: calculate products
For 1 mol C6H6O we need 7 moles O2 to produce 6 moles CO2 and 3 moles H2O
For 21 moles O2 we'll have 6/7 * 21 = 18 moles CO2
For 21 moles O2 we'll have 3/7 * 21 = 9 moles H2O
The limiting reacting is O2
The question is incomplete, the complete question is;
1. Mary and her siblings share similar hair color. Which of these cell components are most involved in determining the hair color of each sibling?
Gene, Chromosome, Nucleus
Cytoplasm, Chloroplasts,Genes
Vacuoles, Nucleus, Chromosomes
Chromosomes, Chloroplasts, Vacuoles
Answer:
Gene, Chromosome, Nucleus
Explanation:
Gene is defined in biology as "a unit of heredity which is transferred from a parent to offspring and is held to determine some characteristic of the offspring" (Oxford Dictionary).
The gene is located in the chromosomes in the nucleus of cells. The sum total of the genes that an organism inherits from its parents is called the organisms' genotype and determines certain features of the organism.
The hair colour of Mary and each of her siblings depends on the genes they received from their parents.
<em>Answer:</em>
<em>Ello mate ! the answer is super simple it's option "A" Fe</em>
<em>Explanation:</em>
<em>Iron is a chemical element with symbol</em><em> "Fe"</em><em> and atomic number 26. It is a type of metal, that belongs to the first transition series and group 8 of the periodic table. It is by mass the most common element on Earth, forming much of Earth's outer and inner core.</em>
O is what should go in the blank. O stands for Oxygen.
The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.