Take the derivative to find the velocity of the object:

The object stops when
:

so the answer is E.
Answer;
-it will move away from the large ball because like charges repel.
Explanation;
-Electric force is the force that pushes apart two like charges, or that pulls together two unlike charges. The basic law of electrostatics Like charges of electricity repel each other, whereas unlike charges attract each other.
When small, positively charged ball is moved close to a large, positively charged ball it would be pushed away from the large positively charged ball since they are both positively charged. One has to put in energy to try to move the small ball closer to the large ball. The closer one try to move it to the large ball, the more energy one has to put in, so the more electrical potential energy the small ball would have.
<span>C.
Sample C would be best, because the percentage of the energy
in an
incident wave that remains in a reflected wave from this material
is the
smallest.
The coefficient of absorption is the percentage of incident sound
that's absorbed. So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an
incident wave that remains.
That's what you want. </span>
Answer:
W =1562.53 N
Explanation:
It is given that,
Radius of the aluminium ball, r = 24 cm = 0.24 m
The density of Aluminium, 
We need to find the thrust and the force. The mass of the liquid displaced is given by :

V is volume
Weight of the displaced liquid
W = mg

So,

So, the thrust and the force is 1562.53 N.
1 kilometre is equal to 1000m
and 4.1 minutes is equal to 246 seconds
thus 1000/246 = 4.065 m/s
and the direction is towards the west