1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novay_Z [31]
3 years ago
14

Two cars start from rest at a red stop light. When the light turns green, both cars accelerate forward. The blue car accelerates

uniformly at a rate of 4.3 m/s2 for 3.3 seconds. It then continues at a constant speed for 14.3 seconds, before applying the brakes such that the car’s speed decreases uniformly coming to rest 253.26 meters from where it started. The yellow car accelerates uniformly for the entire distance, finally catching the blue car just as the blue car comes to a stop.
1)

How fast is the blue car going 2.6 seconds after it starts?

How fast is the blue car going 7.2 seconds after it starts?

How far does the blue car travel before its brakes are applied to slow down?

What is the acceleration of the blue car once the brakes are applied?

What is the total time the blue car is moving?

What is the acceleration of the yellow car?
Physics
1 answer:
melisa1 [442]3 years ago
7 0

Answer:

v_{2.6b}=11.18\ m.s^{-1}

v_{7.2b}=14.19\ m.s^{-1}

s_{bb}=226.3305\ m

a_{db}=-3.7386\ m.s^{-2} negative sign denotes deceleration.

t_b=21.3956\ s

a_y=1.1065\ m.s^{-2}

Explanation:

Given:

  • initial speed of blue car, u_b=0\ m.s^{-1}
  • initial speed of yellow car, u_y=0\ m.s^{-1}
  • acceleration rate of blue car, a_b=4.3\ m.s^{-2}
  • time for which the blue car accelerates, t_{ab}=3.3\ s
  • time for which the blue car moves with uniform speed before decelerating,  t_{ub}=14.3\ s
  • total distance covered by the blue car before coming to rest, s_b=253.26 \ m
  • distance at which the the yellow car intercepts the blue car just as the blue car come to rest, s_y=253.26 \ m

1)

<u>Speed of blue car after 2.6 seconds of starting the motion:</u>

Applying the equation of motion:

v_{2.6b}=u_b+a_b.t

v_{2.6b}=0+4.3\times 2.6

v_{2.6b}=11.18\ m.s^{-1}

<u>Speed of blue car after 7.2 seconds of starting the motion:</u>

∵The car accelerates uniformly for 3.3 seconds after which its speed becomes uniform for the next 14.3 second before it applies the brake.

so,

v_{7.2b}=u+a_b\times t_{ab}

v_{7.2b}=0+4.3\times 3.3

v_{7.2b}=14.19\ m.s^{-1}

<u>Distance travelled by the blue car before application of brakes:</u>

This distance will be s_{bb}= (distance travelled during the accelerated motion) + (distance travelled at uniform motion)

<em>Now the distance travelled during the accelerated motion:</em>

s_{ab}=u_b.t_{ab}+\frac{1}{2} a_{b}.t_{ab}^2

s_{ab}=0\times 3.3+0.5\times 4.3\times 3.3^2

s_{ab}=23.4135\ m

<em>Now the distance travelled at uniform motion:</em>

s_{ub}=14.19\times 14.3

s_{ub}=202.917\ m

Finally:

s_{bb}=s_{ab}+s_{ub}

s_{bb}=23.4135+202.917

s_{bb}=226.3305\ m

<u>Acceleration of the blue car once the brakes are applied</u>

Here we have:

initial velocity, u=14.19\ m.s^{-1}

final velocity, v=0\ m.s^{-1}

distance covered while deceleration, s_{db}=s_b-s_{bb}

\Rightarrow s_{db}=253.26 -226.3305=26.9295\ m

Using the equation of motion:

v^2=u^2+2a_{db}.s_{db}

0^2=14.19^2+2\times a_{db}\times 26.9295

a_{db}=-3.7386\ m.s^{-2} negative sign denotes deceleration.

<u>The total time for which the blue car moves:</u>

t_b=t_a+t_{ub}+t_{db} ........................(1)

<em>Now the time taken to stop the blue car after application of brakes:</em>

Using the eq. of motion:

v=u+a_{db}.t_{db}

0=14.19-3.7386\times t_{db}

t_{db}=3.7956\ s

Putting respective values in eq. (1)

t_b=3.3+14.3+3.7956

t_b=21.3956\ s

<u>For the acceleration of the yellow car:</u>

We apply the law of motion:

s_y=u_y.t_y+\frac{1}{2} a_y.t_y^2

<em>Here the time taken by the yellow car is same for the same distance as it intercepts just before the stopping of blue car.</em>

Now,

253.26=0\times 21.3956+0.5\times a_y\times 21.3956^2

a_y=1.1065\ m.s^{-2}

You might be interested in
So, why can a properly executed karate kick break a concrete block without fracturing bones [16]? first, bone is a very strong m
Sav [38]
PM me for full answer, please. If it's not too late.
3 0
3 years ago
You run away from a plane mirror at 2.30 m/s. At what speed does your image move away from you?
ivanzaharov [21]

Answer:

4.60m/s

.............

5 0
3 years ago
Exposure to the Sun's harmful infrared radiation should be kept to a minimum.
zysi [14]

Of course! If it's harmful, then your exposure to it should be kept
to a minimum.  That's a no-brainer.  But the sun's infrared radiation
is generally less harmful than its ultraviolet radiation is.

7 0
3 years ago
How to atoms behave in non-magnetic items?
Anastaziya [24]

Answer:

By altering the quantum interactions of the electrons in the atoms of a metal's atoms, scientists from the University of Leeds have generated magnetism in metals that aren’t normally magnetic.

Explanation:

5 0
2 years ago
What is the potential energy of a 45 kg object resting on the ground?
yKpoI14uk [10]

Answer:The potential energy is zero

Explanation:

3 0
3 years ago
Other questions:
  • For a neutrally charged atom, which of these must be true?
    5·1 answer
  • Particle a has twice the charge of nearby particle
    12·1 answer
  • A bicyclist on an old bike (combined mass: 92 kg) is rolling down (no pedaling or braking) a hill of height 120 m. Over the cour
    6·2 answers
  • A+20 N force acts on a car and at the same time, a -30 N force acts on the
    5·1 answer
  • The speed of a light wave in a certain transparent material is 0.589 times its speed in vacuum, which is 3.00 x108 m/s. When yel
    9·1 answer
  • Why can someone please help me out
    8·1 answer
  • If a car is moving at a constant velocity of 10 m/s, what is its acceleration?
    5·1 answer
  • The physics of wind instruments is based on the concept of standing waves. When the player blows into the mouthpiece, the column
    12·1 answer
  • A ball is thrown so that its speed increases by 20 m/s in 10 seconds. What is the ball’s acceleration?
    13·1 answer
  • Jack is a transgender male who is sexually attracted to males. Based on what you know about sex
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!