Answer:
Explanation:
Let c be the circumference and r be the radius
c = 2πr , r = c / 2π , area A = π r² = π (c/2π )² = (1/4π) x c²
flux (ψ) = BA = 1 X 1/4π X c²
dψ/dt = 1/4π x 2c dc/dt =1/2π x c x dc/dt
at t = 8 s
c = 161 - 13 x 8 = 57 cm , dc/dt = 13 cm/s
e = dψ/dt = (1 / 2π )x 57 x 13 x 10⁻⁴ = 118 x 10⁻⁴ V.
The velocity when function p(t)=11 is 8 .
According to the question
The position of a car at time t represented by function :
Now,
When function p(t) = 11 , t will be
11 = t²+2t-4
0 = t² + 2t - 15
or
t² +2t-15 = 0
t² +(5-3)t-15 = 0
t² +5t-3t-15 = 0
t(t+5)-3(t+5) = 0
(t-3)(t+5) = 0
t = 3 , -5
as t cannot be -ve as given ( t≥0)
so,
t = 3
Now,
the velocity when p(t)=11
As we know velocity =
therefore to get the value of velocity from function p(t)
we have to differentiate the function with respect to time
v(t) = 2t + 2
where v(t) = velocity at that time
as t = 3 for p(t)=11
so ,
v(t) = 2t + 2
v(t) = 2*3 + 2
v(t) = 8
Hence, the velocity when function p(t)=11 is 8 .
To know more about function here:
brainly.com/question/12431044
#SPJ4
Electromagnetic waves<span> transfer energy without going through a medium. ... Sometimes, a </span>transverse wave<span> and a </span>longitudinal wave can combine to form<span>another </span>kind<span> of </span>wave<span> called a surface </span>wave<span>. </span>Transverse Waves<span>. </span>Waves<span> in which the particles vibrate in an up-and-down motion
</span>