Answer:
Math and Computer Skills. A qualified engineer should be good at math, at least through the level of calculus and trigonometry, and understand the importance of following the data when making design decisions.
Organization and Attention to Detail.
Curiosity.
Creativity.
Critical Thinking.
Intuition.
Explanation:
Answer:
R=1923Ω
Explanation:
Resistivity(R) of copper wire at 20 degrees Celsius is 1.72x10^-8Ωm.
Coil length(L) of the wire=37.0m
Cross-sectional area of the conductor or wire (A) = πr^2
A= π * (2.053/1000)/2=3.31*10^-6
To calculate for the resistance (R):
R=ρ*L/A
R=(1.72*10^8)*(37.0)/(3.31*10^-6)
R=1922.65Ω
Approximately, R=1923Ω
Answer:
The tube surface temperature immediately after installation is 120.4°C and after prolonged service is 110.8°C
Explanation:
The properties of water at 100°C and 1 atm are:
pL = 957.9 kg/m³
pV = 0.596 kg/m³
ΔHL = 2257 kJ/kg
CpL = 4.217 kJ/kg K
uL = 279x10⁻⁶Ns/m²
KL = 0.68 W/m K
σ = 58.9x10³N/m
When the water boils on the surface its heat flux is:

For copper-water, the properties are:
Cfg = 0.0128
The heat flux is:
qn = 0.9 * 18703.42 = 16833.078 W/m²

The tube surface temperature immediately after installation is:
Tinst = 100 + 20.4 = 120.4°C
For rough surfaces, Cfg = 0.0068. Using the same equation:
ΔT = 10.8°C
The tube surface temperature after prolonged service is:
Tprolo = 100 + 10.8 = 110.8°C