<span>Molality(m) or molal concentration is a measure
of concentration and it refers to amount of substance in a specified amount of
mass of the solvent. Used unit for molality is mol/kg which is also
sometimes denoted as 1 molal. It is equal to the moles of solute (the substance
being dissolved) divided by the kilograms of solvent (the substance used to
dissolve).</span>
Molarity(M) or molar concentration is also a
measure of concentration and represents the amount of substance per unit volume
of solution(number of moles per litre of solution. Used unit for molarity is
mol/L or M. A solution with a concentration of 1 mol/L is equivalent to 1 molar
(1 M).
Molality is preferred when
the temperature of the solution varies, because it does not depend on
temperature, (neither number of moles of solute nor mass of solvent will be affected
by changes of temperature), while molarity changes as temperature changes(volume
of solution changes as temperature changes).
Answer:
The concentration of the resulting solution in parts per million is 177.97
Explanation:
Parts per million (ppm), is a unit of measure for concentration that refers to the number of units of the substance per million units of the set.
The concentration in parts per million expressed in mass / mass is calculated by dividing the mass of the solute (ms) by the mass of the solution (md, sum of the mass of the solute and the mass of the solvent), both expressed in the same unit and multiplied by 10⁶ (1 million).

So, being:
- md: 0.089 grams of KI + 500 grams of H₂O= 500.089 grams
Replacing:

ppm= 177.97
<u><em>The concentration of the resulting solution in parts per million is 177.97</em></u>
Crystsals can precipitate out of solution when some of the solvent is evaporated. For example, if you have sodium chloride in solution and you evaporate out the water some sodium chloride crystals will form. I hope this helps. Let me know if anything is unclear.
hhhhhhhgfffffffffffffffffffffffffffffndbd
Answer:
C.) Csp² - Nsp³
Explanation:
Because the carbon has only 3 unique bonds, the conformation of the carbon should be Csp² (s + p + p). While the nitrogen also has only 3 bonds, making up 3 orbitals, it also has a lone pair of electrons. These electrons also take up one orbital. Therefore, the conformation of nitrogen is Nsp³ (s + p + p + p).