Answer: 1.027 x 10^6 g= 1027kg
In this question, you are given the volume of the blimp (2.027×10^5 ft^3) and the density of the gas(0.179g/L). To answer this question, you need to convert the volume unit into liter. The calculation would be: 2.027×10^5 ft^3 x 28.3168L/ft3= 57.398 x 10^5L= 5.74x10^6L
Then to find the mass, multiply the volume with the density. The calculation would be: 5.74x10^6L x 0.179g/L= 1.027 x 10^6 g= 1027kg
The true statements are;
<h3>What is a redox reaction?</h3>
We define a redox reaction as one in which a specie is oxidized and another is reduced.
Now;
Eo cell = cell potential = -0.13 V - (+0.34 V) = -0.47 V
n =number of moles of electrons = 2 mole of electrons
K = equilibrium constant
ΔG = change in free energy
Eo cell = 0.0592/n log K
-0.47 = 0.0592/2 log K
log K = -0.47 * 2/0.0592
K = 1.3 * 10^-16
ΔG = -nFEo cell
ΔG = -(2 * 96500 * -0.47)
ΔG = 90.7kJ
Learn more about Ecell:brainly.com/question/10203847
#SPJ1
The first step in the reaction is the double bond of the Alkene going after the H of HBr. This protonates the Alkene via Markovnikov's rule, and forms a carbocation. The stability of this carbocation dictates the rate of the reaction.
<span>So to solve your problem, protonate all your Alkenes following Markovnikov's rule, and then compare the relative stability of your resulting carbocations. Tertiary is more stable than secondary, so an Alkene that produces a tertiary carbocation reacts faster than an Alkene that produces a secondary carbocation.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
</span>
Answer:
lose potential energy and gain kinetic energy
Explanation:
trust me thats the right answer i am not goo at explanations
The answer is package c because each cd would cost $1.87, which is the lowest price