To solve this problem we apply the thermodynamic equations of linear expansion in bodies.
Mathematically the change in the length of a body is subject to the mathematical expression

Where,
Initial Length
Thermal expansion coefficient
Change in temperature
Since we have values in different units we proceed to transform the temperature to degrees Celsius so


The coefficient of thermal expansion given is

The initial length would be,

Replacing we have to,




This means that the building will be 35.5cm taller
Baseball, javelin, and maybe the clock but not sure on that... Just say baseball and javelin
Answer:

Explanation:
The net force exerted on the mass is the sum of tension force and the external force of gravity.

is the tension force.
is the force of gravity.

where
is the rope's radius from the fixed point.
From the net force equation above:

Hence the tension force is 6.046N
Answer:
4 km/hr
Explanation:
The computation of the actual velocity is shown below:
Because the path of its paddles is opposed to the current direction, the real velocity can be determined by deducting the current velocity to its velocity while paddling
So, the actual velocity is
= Upstream - downstream
= 19 km/hr - 15 km/hr
= 4 km/hr
As we can see it is in positive, so it is an upstream direction