A dishwasher and a dryer im not sure if that is right but that’s what I would put
So, the force of gravity that the asteroid and the planet have on each other approximately 
<h3>Introduction</h3>
Hi ! Now, I will help to discuss about the gravitational force between two objects. The force of gravity is not affected by the radius of an object, but radius between two object. Moreover, if the object is a planet, the radius of the planet is only to calculate the "gravitational acceleration" on the planet itself,does not determine the gravitational force between the two planets. For the gravitational force between two objects, it can be calculated using the following formula :

With the following condition :
- F = gravitational force (N)
- G = gravity constant ≈
N.m²/kg²
= mass of the first object (kg)
= mass of the second object (kg)- r = distance between two objects (m)
<h3>Problem Solving</h3>
We know that :
- G = gravity constant ≈
N.m²/kg²
= mass of the planet X =
kg.
= mass of the planet Y =
kg.- r = distance between two objects =
m.
What was asked :
- F = gravitational force = ... N
Step by step :





<h3>Conclusion</h3>
So, the force of gravity that the asteroid and the planet have on each other approximately

<h3>See More</h3>
Answer:
3560.36 Watts
Explanation:
Power,
where P is power, n is the number of skiers, t is time in seconds and Δt is change in time, ΔW is given by mgh where m is mass, g is gravitational constant, h is height
Substituting n for 4 skiers, m for 62.9 Kg, g for 9.81, h for 148 m and t for 1.71*60=102.6 seconds
P=
Average power is approximately 3560.36 Watts
C. The force is a constant change, because her position on the Ferris wheel will constantly change. I believe this is the answer, but use sources to double check. I might use different vocab. then your teachers.
We are given the mass of an <span>aluminum sculpture which is 145 kg and a horizontal force equal to 668 Newtons. The coefficient of friction can be determined by dividing the horizontal force by the weight of the object. In this case, 668 N / 145 * 9.8 equal to coeff of friction of 0.47</span>