We can answer this one very quickly. From the <em>Law of Conservation of Energy</em>, we know that "Energy can't be created or destroyed.".
So that only leaves us one way to complete the sentence in this question:
"One form of energy can be <em>transformed into</em> another type of energy.
" <em>(B)</em>
Answer:
1. A <em>series circuit </em>is a closed circuit which has all loads connected in a row and there is only one path for the current to flow.
2. The <em>Ohm's Law </em>state that a current flow through a resistor is directly proportional to the voltage across it
3. A <em>parallel circuit </em>is a closed circuit divided into branches that it has two o more paths for the current to flow and the loads are parallel to each other which mean the voltage across them is the same for all loads.
Answer:
11.8 m/s
Explanation:
At the top of the hill, there are two forces on the car: weight force pulling down (towards the center of the circle), and normal force pushing up (away from the center of the circle).
Sum of forces in the centripetal direction:
∑F = ma
mg − N = m v²/r
At the maximum speed, the normal force is 0.
mg = m v²/r
g = v²/r
v = √(gr)
v = √(9.8 m/s² × 14.2 m)
v = 11.8 m/s
Answer:
v = -14 m/s
Explanation:
Given that,
Initial location of the ball, X₁ = 10 m
Final position of the ball, X₂ = -25 m
Time taken to travel is, t = 2.5 s
The average velocity of the ball is given by the formula,
V = X₂ - X₁ / t m/s
Substituting the values in the above equation,
V = -25 - 10 / 2.5
= -14 m/s
The negative sign in the velocity indicates that ball rolls in the opposite direction.
Hence, the average velocity of the ball is v = -14 m/s
The Coulomb force between two or more charged bodies is the force between them due to Coulomb's law. If the particles are both positively or negatively charged, the force is repulsive; if they are of opposite charge, it is attractive. ... Like the gravitational force, the Coulomb force is an inverse square law.