Answer:
the work done by the 30N force is 4156.92 J.
For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:
W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J
40 seconds I’m pretty sure sorry if I’m wrong
For speed you can differentiate the equation, for acceleration you can again differentiate the equation .
at t=0 the particle is slowing down , when you get equation for velocity put t=0 then only -1 is left
A). nuclear
No. There were batteries long long before we learned
how to use nuclear energy. Also, there is no danger of
exposure to radioactivity when you're working with a battery.
b). mechanical
No. A battery has no moving parts.
c). gravitational
No. No matter how high you take a battery in an airplane, or
how far you lower it into a mine-shaft, its characteristics don't
change. In fact, batteries even work on things that are in orbit.
d). chemical
Bingo.