Answer:
Ammonia fortis liquor is a saturated solution of ammonia in water. It is also called 880 ammonia. Its relative density is 0.880. It is stored in tightly sealed bottles in a cold place. (Sorry if I'm wrong)
Explanation:
<u>Answer:</u> The concentration of
required will be 0.285 M.
<u>Explanation:</u>
To calculate the molarity of
, we use the equation:

Moles of
= 0.016 moles
Volume of solution = 1 L
Putting values in above equation, we get:

For the given chemical equations:

![Ni^{2+}(aq.)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K_f=1.2\times 10^9](https://tex.z-dn.net/?f=Ni%5E%7B2%2B%7D%28aq.%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK_f%3D1.2%5Ctimes%2010%5E9)
Net equation: ![NiC_2O_4(s)+6NH_3(aq.)\rightleftharpoons [Ni(NH_3)_6]^{2+}+C_2O_4^{2-}(aq.);K=?](https://tex.z-dn.net/?f=NiC_2O_4%28s%29%2B6NH_3%28aq.%29%5Crightleftharpoons%20%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%2BC_2O_4%5E%7B2-%7D%28aq.%29%3BK%3D%3F)
To calculate the equilibrium constant, K for above equation, we get:

The expression for equilibrium constant of above equation is:
![K=\frac{[C_2O_4^{2-}][[Ni(NH_3)_6]^{2+}]}{[NiC_2O_4][NH_3]^6}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BC_2O_4%5E%7B2-%7D%5D%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%7D%7B%5BNiC_2O_4%5D%5BNH_3%5D%5E6%7D)
As,
is a solid, so its activity is taken as 1 and so for 
We are given:
![[[Ni(NH_3)_6]^{2+}]=0.016M](https://tex.z-dn.net/?f=%5B%5BNi%28NH_3%29_6%5D%5E%7B2%2B%7D%5D%3D0.016M)
Putting values in above equations, we get:
![0.48=\frac{0.016}{[NH_3]^6}}](https://tex.z-dn.net/?f=0.48%3D%5Cfrac%7B0.016%7D%7B%5BNH_3%5D%5E6%7D%7D)
![[NH_3]=0.285M](https://tex.z-dn.net/?f=%5BNH_3%5D%3D0.285M)
Hence, the concentration of
required will be 0.285 M.
Reducing the volume of contained gas by one third, while holding temperature constant, causes pressure to D. be increased by one third
Answer:
0.0249 moles in 1 g of Ca
Explanation:
Let's think in the molar mass of Ca.
Ca = 40.08 g/mol
So 1 mol weighs 40.08 grams, or in the opposite 40.08 grams is the weigh of 1 mol
The rule of three will be:
40.08 g are contained in 1 mol
1 g may be contained in (1 . 1) / 40.08 = 0.0249 moles