It would most definitely not be a hill or a cliff. I believe it would be a plain.
Answer:
0.025 A
Explanation:
A = 50 cm^2 = 50 x 10^-4 m^2
B2 = 6 T, B1 = 2 T
db = 6 - 2 = 4 T
dt = 2 s
R = 0.4 ohm
Let i be the magnitude of induced current and e be the induced emf.
According to the Faraday's law of electromagnetic induction
e = dФ / dt
e = A dB / dt
e = 50 x 10^-4 x 4 / 2 = 0.01 V
i = e / R = 0.01 / 0.4 = 0.025 A
For a human jumper to reach a height of 110 cm, the person will need to leave the ground at a speed of 4.65 m/s.
We can calculate the initial speed to reach 110 cm of height with the following equation:

Where:
: is the final speed = 0 (at the maximum height of 110 cm)
: is the initial speed =?
g: is the acceleration due to gravity = 9.81 m/s²
h: is the height = 110 cm = 1.10 m
Hence, the <u>initial velocity</u> is:

Therefore, the initial speed that the person must have to reach 110 cm is 4.65 m/s.
You can see another example here: brainly.com/question/13359681?referrer=searchResults
I hope it helps you!
I believe destructive interference