Answer:
87.78 in cubed
Explanation:
excuse me if I am wrong i tried my best
don't know if its right
Answer:

Explanation:
We are asked to find how many moles of sodium carbonate are in 57.3 grams of the substance.
Carbonate is CO₃ and has an oxidation number of -2. Sodium is Na and has an oxidation number of +1. There must be 2 moles of sodium so the charge of the sodium balances the charge of the carbonate. The formula is Na₂CO₃.
We will convert grams to moles using the molar mass or the mass of 1 mole of a substance. They are found on the Periodic Table as the atomic masses, but the units are grams per mole instead of atomic mass units. Look up the molar masses of the individual elements.
- Na: 22.9897693 g/mol
- C: 12.011 g/mol
- O: 15.999 g/mol
Remember the formula contains subscripts. There are multiple moles of some elements in 1 mole of the compound. We multiply the element's molar mass by the subscript after it, then add everything together.
- Na₂ = 22.9897693 * 2= 45.9795386 g/mol
- O₃ = 15.999 * 3= 47.997 g/mol
- Na₂CO₃= 45.9795386 + 12.011 + 47.997 =105.9875386 g/mol
We will convert using dimensional analysis. Set up a ratio using the molar mass.

We are converting 57.3 grams to moles, so we multiply by this value.

Flip the ratio so the units of grams of sodium carbonate cancel.




The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we found that is the thousandth place. The 6 in the ten-thousandth place to the right tells us to round the 0 up to a 1.

There are approximately <u>0.541 moles of sodium carbonate</u> in 57.3 grams.
Answer:
If two atoms get close enough together then the electrons of each atom will be attracted to both nuclii
Explanation:
Explanation:
Once solid ammonium nitrate interacts with water, the molecules of polar water intermingle with these ions and attract individual ions from the structure of the lattice, that actually will break down. E.g;-NH4NO3(s) — NH4+(aq)+ NO3-(aq) To split the ionic bonds that bind the lattice intact takes energy that is drained from the surroundings to cool the solution.
Some heat energy is produced once the ammonium and nitrate ions react with the water molecules (exothermic reaction), however this heat is far below that is needed by the H2O molecules to split the powerful ionic bonds in the solid ammonium nitrate.
Hence, we can say that the dissolution of ammonium nitrate in water is highly endothermic reaction.