1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zavuch27 [327]
3 years ago
15

What is the voltage across a semiconductor bar if the current through it is 0.17 A? The electron concentration in the bar is 2.7

E18 cm^-3 and the electron mobility is 1000 cm^2/(V*s). Ignore the hole concentration. The bar length and the area are 0.1 mm and 500 um^2. (UNIT:V) 0.7870 V
Physics
1 answer:
Anastaziya [24]3 years ago
6 0

Answer:

The voltage across a semiconductor bar is 0.068 V.

Explanation:

Given that,

Current = 0.17 A

Electron concentration n= 2.7\times10^{18}\ cm^{-3}

Electron mobility \mu=1000 cm^2/Vs

Length = 0.1 mm

Area = 500 μm²

We need to calculate the resistivity

Using formula of resistivity

\sigma=n\times q\times \mu

\rho=\dfrac{1}{\sigma}

Put the value into the formula

\rho=\dfrac{1}{2.7\times10^{18}\times10^{6}\times1.6\times10^{-19}\times1000\times10^{-4}}

\rho=2\ \mu \Omega m

We need to calculate the resistance

Using formula of resistance

R=\dfrac{\rho l}{A}

R=\dfrac{2\times10^{-6}\times0.1\times10^{-3}}{500\times(10^{-6})^2}

R=0.4\ \Omega

We need to calculate the voltage

Using formula of voltage

V= IR

Put the value into the formula

V=0.17\times0.4

V=0.068\ V

Hence, The voltage across a semiconductor bar is 0.068 V.

You might be interested in
Fill in the blanks. The electrostatic force between two objects is proportional to the ____________________ of the distance ____
Shkiper50 [21]
Write an equation to calculate the force between two objects if the product of their charges is 10.0 × 10-4 C. (Note: Use the variable R for the distance between the charges.)

F = 900 ÷_________
6 0
3 years ago
Read 2 more answers
The Earth revolves around the Sun once a year at an average distance of 1.50×1011m. Find the orbital radius that corresponds to
DedPeter [7]

Answer:

9.4\cdot 10^{10} m

Explanation:

We can solve the problem by using Kepler's third law, which states that the ratio between the cube of the orbital radius and the square of the orbital period is constant for every object orbiting the Sun. So we can write

\frac{r_a^3}{T_a^2}=\frac{r_e^3}{T_e^2}

where

r_o is the distance of the new object from the sun (orbital radius)

T_o=180 d is the orbital period of the object

r_e = 1.50\cdot 10^{11} m is the orbital radius of the Earth

T_e=365 d is the orbital period the Earth

Solving the equation for r_o, we find

r_o = \sqrt[3]{\frac{r_e^3}{T_e^2}T_o^2} =\sqrt[3]{\frac{(1.50\cdot 10^{11}m)^3}{(365 d)^2}(180 d)^2}=9.4\cdot 10^{10} m

3 0
3 years ago
How is work calculated when the force applied is not parallel to the displacement
Leno4ka [110]
Pretty sure it’s Force*Distance*Cos(theta)
7 0
3 years ago
Read 2 more answers
A plane flying at a steady speed of 100 m/s accelerates to 150 m/s in 10 seconds. What is the plane’s acceleration?
Rashid [163]

A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.

<h3>What is acceleration?</h3>

Acceleration is the change in velocity over time.

A plane is flying initially at 100 m/s (u) and it accelerates to 150 m/s (v) in 10 s (t). We can calculate its acceleration using the following expression.

a = v - u / t = (150 m/s - 100 m/s) / 10 s = 5 m/s²

A plane flying initially at 100 m/s uses an acceleration of 5 m/s² to reach a velocity of 150 m/s in 10 seconds.

Learn more about acceleration here: brainly.com/question/14344386

#SPJ1

5 0
1 year ago
If we were to illuminate them only with light from the Balmer transition considered above, would the solar panels produce a curr
Ugo [173]

Answer:

No

Explanation:

The reason why no current is produced are basically that, the wavelengths of light in the Balmer transition are reflected, not absorbed in solar panels, hence no current is produced.

The Balmer series consists of lines in the visible spectrum. It corresponds to emission of a photon of light when electrons descend from higher energy levels to the n=2 level in the hydrogen spectrum. The various wavelengths in the Balmer series can be separated by a prism since they are all in the visible region of the electromagnetic spectrum.

In solar panels, light corresponding to the wavelengths in the Balmer series is merely reflected by the panel and not absorbed. Since light is not absorbed, no current can be produced when the panel is irradiated with light corresponding to the wavelengths in the Balmer series.

6 0
3 years ago
Other questions:
  • Why are the Inner Planets composed mostly of rock and the Outer Planets<br> composed mostly of gas
    11·1 answer
  • Why are bridges declared unsafe after a long use​
    14·1 answer
  • PLEASE HELP!! PHYSICS QUESTION-DOES ANYONE KNOW HOW TO DO THIS WITH THE WORKING OUT?!?
    14·1 answer
  • Pls someone help with number 3
    11·1 answer
  • If a jumping frog can give itself the same initial speed regardless of the direction in which it jumps (forward or straight up),
    10·1 answer
  • How do the charges compare when two objects are charged through friction
    5·1 answer
  • A car's acceleration is 3m/s2. If the car started at rest and it only took 10s for the car to reach this acceleration, what is t
    15·1 answer
  • How does the mass of and distance between the Sun and the Earth impact the number of days in a year?
    8·1 answer
  • The hydrogen atom, changing from its first excited state to its lowest energy state, emits light with a wavelength of 122 nm. Th
    11·1 answer
  • Thế nào là gương cầu lồi
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!