The frequency of the wave has not changed.
In fact, the frequency of a wave is given by:

where v is the wave's speed and
is the wavelength.
Applying the formula:
- In air, the frequency of the wave is:

- underwater, the frequency of the wave is:

So, the frequency has not changed.
Answer:
Explanation:
Let the volume below water be v . Then
buoyant force = v d g where d is density of water , g is acceleration due to gravity
= v x 1000 x g
weight of wood piece = volume x density of wood x g
= .6 x 600 x g
for equilibrium while floating
buoyant force = weight
= v x 1000 x g = .6 x 600 x g
v = .36 m²
volume above water or volume exposed = .6 - .36
= .24 m²
When immersed completely ,
buoyant force = .6 x 1000 x 9.8
= 5880 N
weight of wood
= .6 x 600 x g
= 3528 N
buoyant force is more than the weight . In order to equalise them for floating with full volume in water
weight required = 5880 - 3528
= 2352 N.
Answer:
A free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N.
Explanation:
This is because at terminal velocity, the ball stops accelerating and the net force on the ball is zero. For the net force to be zero, equal and opposite forces must act on the ball, so that their resultant force is zero. That is F₁ + F₂ = 0 ⇒ F₁ = -F₂
Since F₁ = 20 N, then F₂ = -F₁ = -20 N
So, if F₁ points upwards since it is positive, then F₂ points downwards since it is negative.
So, a free body diagram with 2 forces: the first pointing downward labeled F Subscript g Baseline 20 N and the second pointing upward labeled F Subscript air Baseline 20 N best describes the ball falling at terminal velocity.
<span>A solution is oversaturated with solute. The thing that could be done to decrease the oversaturation is to add more solvent in order to decrease the concentration of the solute. You can also increase the temperature to increase solubility of the solute. Hope this answers the question.</span>
Answer:

Explanation:
As given point p is equidistant from both the charges
It must be in the middle of both the charges
Assuming all 3 points lie on the same line
Electric Field due a charge q at a point ,distance r away

Where
- q is the charge
- r is the distance
-
is the permittivity of medium
Let electric field due to charge q be F1 and -q be F2
I is the distance of P from q and also from charge -q
⇒
F1
F2
⇒
F1+F2=