Answer:
No. Twice as much work will give the ball twice as much kinetic energy. But since KE is proportional to the speed squared, the speed will be
times larger.
Explanation:
The work done on the ball is equal to the kinetic energy gained by the ball:

So when the work done doubles, the kinetic energy doubles as well:

However, the kinetic energy is given by

where
m is the mass of the ball
v is its speed
We see that the kinetic energy is proportional to the square of the speed,
. We can rewrite the last equation as

which also means

If the work is doubled,

So the new speed is

So, the speed is
times larger.
I am not good at math but what grade r u in cause i am in 9th and if u r then i might can help
Answer:
TRUE
Explanation:
Low mass stars last lots longer.
Answer:
Wavelength, 
Explanation:
Given that,
Mass of the particle, 
Acceleration of the particle, 
Time, t = 5 s
It starts from rest, u = 0
The De Broglie wavelength is given by :

v = a × t



Hence, this is the required solution.
In position A
<em>The</em><em> </em><em>mirror </em><em>has</em><em> </em><em>to</em><em> </em><em>be</em><em> </em><em>observed</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>ray</em><em> </em><em>reflected</em><em> </em><em>from</em><em> </em><em>the</em><em> </em><em>mi</em><em>rror</em><em>.</em>
<em>Since</em><em> </em><em>the</em><em> </em><em>the</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>reflec</em><em>tion</em><em> </em><em>is</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>the</em><em> </em><em>angle</em><em> </em><em>of</em><em> </em><em>incidence</em><em>,</em><em> </em><em>the</em><em> </em><em>reflected</em><em> </em><em>ray</em><em> </em><em>must</em><em> </em><em>be</em><em> </em><em>in</em><em> </em><em>equal</em><em> </em><em>path</em><em> </em><em>as</em><em> </em><em>the</em><em> </em><em>incident</em><em> </em><em>ray</em><em>.</em>
<em>That</em><em> </em><em>phenomenon</em><em> </em><em>is</em><em> </em><em>only</em><em> </em><em>in</em><em> </em><em>diagram</em><em> </em><em>A</em>