Answer:
1) F = 24 N
2) Distance = 1 m
Explanation:
We are given;
Mass; m = 120 g = 0.12 kg
Initial velocity; u = 20 m/s
Final velocity; v = 0 m/s since it came to rest.
Time; t = 0.1 s
We can calculate acceleration from Newton's first equation of motion;
a = (v - u)/t
a = (0 - 20)/0.1
a = -200 m/s²
1) magnitude of the resistance will be;
F = ma
F = 0.12 × (-200)
F = -24 N
Since, we are dealing with the magnitude, we will take the absolute value. Thus, F = 24 N
2) To find the distance moved by the bullet, we know that;
Distance = Average speed × time
Thus;
Distance = ((v + u)/2) × t
Distance = ((0 + 20)/2) × 0.1
Distance = 1 m
Answer:t=0.3253 s
Explanation:
Given
speed of balloon is 
speed of camera 
Initial separation between camera and balloon is 
Suppose after t sec of throw camera reach balloon then,
distance travel by balloon is


and distance travel by camera to reach balloon is


Now






There are two times when camera reaches the same level as balloon and the smaller time is associated with with the first one .
(b)When passenger catches the camera time is 
velocity is given by



and position of camera is same as of balloon so
Position is 

1.
m = mass of Mr. Ure = 65 kg
g = acceleration due to gravity = 9.8 m/s²
force of earth's gravity on Mr. Ure is given as
F = mg
F = 65 x 9.8
F = 637 N
2.
F = force of gravity on car = 3050 N
m = mass of the car = ?
g = acceleration due to gravity = 9.8 m/s²
force of gravity on car is given as
F = mg
3050 = m (9.8)
m = 3050/9.8
m = 311.22 kg
3.
m = mass of Mr. Rees = 90 kg
g = acceleration due to gravity = 9.8 m/s²
force of earth's gravity on Mr. Rees is given as
F = mg
F = 90 x 9.8
F = 882 N