Answer:
Head loss in turbulent flow is varying as square of velocity.
Explanation:
As we know that head loss in turbulent flow given as

Where
F is the friction factor.
L is the length of pipe
V is the flow velocity
D is the diameter of pipe.
So from above equation we can say that

It means that head loss in turbulent flow is varying as square of velocity.
We know that loss in flow are of two types
1.Major loss :Due to surface property of pipe
2.Minor loss :Due to change in momentum of fluid.
The final temperature : 78.925°C
<h3>Further explanation </h3>
Heat can be calculated using the formula:
Q = mc∆T
Q = heat, J
m = mass, g
c = specific heat, joules / g ° C
∆T = temperature difference, ° C / K
Energy releases = 130 kcal = 130 x 4.18 kJ=543.4 kJ
The final temperature :

Final temperature :
ΔT=final-initial
51.925°c=final-27°c
final = 51.925+27=78.925°C
The activity series of metals as well as the electrode potential of metals can be used to compare the reactivity of metals.
<h3>What is used in comparing reactivity of metals?</h3>
The reactivity of metals can be compared using their electrode potentials which is a measures of the ability of the metal to donate electrons to another metal.
When comparing the reactivity of metals, the metal with the lesser negative electrode potential will be more reactive than another with a greater negative or positive electrode potential.
Therefore, the activity series of metals as well as the electrode potential of metals can be used to compare the reactivity of metals.
Learn more about activity series of metals at: brainly.com/question/17469010
#SPJ12
Answer:
![[Ar] 3d^{2} 4s^{2}](https://tex.z-dn.net/?f=%5BAr%5D%203d%5E%7B2%7D%204s%5E%7B2%7D)
Explanation:
You can look at the periodic table and figure out the electron config.