Answer:
265 mL is the new volume for the gas
Explanation:
We decompose the Ideal Gases Law in order to find the answer of this question: P . V = n . R . T
We can propose the formula for the 2 situations, where n remains constant.
R refers to 0.082 L.atm/mol.K which is physic constant.
We convert the temperature to Absolute value:
67.5°C + 273 = 340.5 K
80°C + 273 = 353 K
We convert the volume to L → 242.2 mL . 1 L/1000 mL = 0.2422 L
We convert the pressure values to atm:
882 Torr . 1 atm/ 760 Torr = 1.16 atm
840 Torr . 1atm / 760 Torr = 1.10 atm
P₁. V₁ / T₁ = P₂ . V₂ / T₂ → Let's replace data:
1.16 atm . 0.2422L / 340.5K = 1.10 atm . V₂ / 353 K
(1.16 atm . 0.2422L / 340.5K) . 353K = 1.10 atm . V₂
V₂ = 0.291 L.atm / 1.10 atm → 0.2647 L ≅ 265 mL
Hope this answers your question Mariaduong159
Radiometric Dating. It's used to find the dates of ricks and other objects based on what the known decay rate of radioactive isotopes. Different forms of this method can also estimate the age of natural and man-made materials.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
33.6 moles are needed to completely react with 84.0 moles of O2