Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²
Early hypotheses were not based on observations.
Early hypotheses were not tested by experimentation.
Early hypotheses were formed from scientific questions.
Early hypotheses were influenced by creative thinking
Answer:
As the velocity of light is constant so the acceleration of the light is equal to zero.
a= dv/dt
Explanation:
Motion is detected when an object changes its position with respect to a reference point. Coordinate system is basically used to represent motion. A coordinate system uses numbers or coordinates which represent position of the reference points on a two-dimensional or three-dimensional space. The trajectory of a point or line can be studied on a coordinate system which describes various aspects of motion like velocity, acceleration, distance, displacement etc. Coordinate system is important because it helps to choose a starting point and the direction (which will be positive).
Answer:
W has the lowest density and Y has the greatest density
Explanation:
Density of W = mass/volume = 11/24 = 0.45
Density of X = mass/volume = 11/12 = 0.91
Density of Y = m/v = 5.5/4 = 1.375
Density of Z = m/v = 5.5/11 = 0.5
From these we can find the answer......
Hope this answer is useful......