One thing to notice in the question is, we are asked about molecular oxygen that has formula O2 not atomic oxygen O.
As we are asked about molecular oxygen, we will answer the question in terms of number of molecules that are present in 16 grams of molecular oxygen.
To get the number of molecules present in 16 grams of O2, we will use the formula:
No. of molecules = no. of moles x Avogadro's number (NA)----- eq 1)
As we know:
The number of moles = mass/ molar mass of molecule
Here we have been given mass already, 16 grams and the molar mass of O2 is 32 grams.
Putting the values in above formula:
= 16/32
= 0.5 moles
Putting the number of moles and Avogadro's number (6.02 * 10^23) in eq 1
No. of molecules = 0.5 x 6.02 * 10^23
=3.01 x 10^23 molecules
or 301,000,000,000,000,000,000,000 molecules
This means that 16 grams of 3.01 x 10^23 molecules of oxygen.
Hope it helps!
Answer:
aldehyde
carbon-1
ketone
carbon-2
Explanation:
Monosaccharides are colorless crystalline solids that are very soluble in water. Moat have a swwet taste. D-Fructose is the sweetest monosaccharide.
In the open chain form, monosaaccharides have a carbonuyl group in one of their chains. If the carbonyl group is in the form of an aldehyde group, the monosaccharide is an aldose; if the carbonyl group is in the form of a ketone group, the monosaccharide is known as a ketose. glucose is an aldose while fructose is a ketose.
In D-glucose, there is an aldehyde functional group, and the carbonyl group is at carbon-1 when looking at the Fischer projection.
In D-fructose, there is a ketone functional group, and the carbonyl group is at carbon-2 when looking at the Fischer projection.
What are some of the body's internal defenses. The skin helps protect stuff to!