Answer:
I hope following attachment will help you a lot!
Explanation:
Explanation:
Air fuel ratio:
Air fuel ratio is the ratio of mass of air to the mass of fuel.So we can say that

As we know that fuel burn in the presence of air that is why we have to maintain a proper amount of air fuel ratio.
When we need more power then we have supply more fuel and to burn this fuel ,require a specified amount of air.So for different loading condition of engine different air fuel ratio is required.
When air is less and fuel is more then it is called rich air fuel ratio .when air is more and fuel is less then it is called poor air fuel ratio.
Answer:
Hook's law holds good up to. A elastic limit. B. plastic limit. C.yield point. D.Breaking point
Answer:
Change in entropy S = 0.061
Second law of thermodynamics is satisfied since there is an increase in entropy
Explanation:
Heat Q = 300 kW
T2 = 24°C = 297 K
T1 = 7°C = 280 K
Change in entropy =
S = Q(1/T1 - 1/T2)
= 300(1/280 - 1/297) = 0.061
There is a positive increase in entropy so the second law is satisfied.
Answer:
the crown is false densty= 12556kg/m^3[/tex]
Explanation:
Hello! The first step to solve this problem is to find the mass of the crown, this is found using the weight of the crown in the air by means of the equation for the weight.
W=mg
W=weight(N)=31.4N
M=Mass
g=gravity=9.81m/S^2
solving for M
m=W/g

The second step is find the volume of crown remembering that when an object is weighed in the water the result is the subtraction between the weight of the object and the buoyant force of the water which is the product of the volume of the crown by gravity by density of water

Where
F=weight in water=28.9N
m=mass of crown=3.2kg
g=gravity=9.81m/S^2
α=density of water=1000kg/m^3
V= crown´s volume
solving for V

finally, we remember that the density is equal to the index between mass and volume

To determine the density of the crown without using the weight in the water and with a bucket we can use the following steps.
1.weigh the crown in the air and find the mass
2. put water in a cylindrical bucket and measure its height with a ruler.
3. Put the crown in the bucket and measure the new water level with a ruler.
4. Subtract the heights, and find the volume of a cylinder knowing the difference in heights and the diameter of the bucket, in order to determine the volume of the crown.
5. find density by dividing mass by volume