Answers:
(a) 1s² 2s²2p³; (b) 1s² 2s²2p⁶ 3s²3p⁶ 4s²3d²; (c) 1s² 2s²2p⁶ 3s²3p⁵
Step-by-step explanation:
One way to solve this problem is to add electrons to the orbitals one-by-one until you have added the required amount.
Fill the subshells in the order listed in the diagram below. Remember that an s subshell can hold two electrons, while a p subshell can hold six, and a d subshell can hold ten.
(a) <em>Seven electrons
</em>
1s² 2s²2p³
There are two electrons in the 2s subshell and three in the 2p subshell. The remaining two electrons are in the inner 1s subshell.
(b) <em>22 electrons
</em>
1s² 2s²2p⁶ 3s²3p⁶ 4s²3d²
There are two electrons in the 4s subshell and two in the 2p subshell. The remaining 18 electrons are in the inner subshells.
(c) <em>17 electrons</em>
1s² 2s²2p⁶ 3s²3p⁵
There are two electrons in the 3s subshell and five in the 2p subshell. The remaining 10 electrons are in the inner subshells.
Answer:
Explanation:
Principal quantum no "n" = 3
Azimuthal quantum no "l"= 1
Magnetic quantum no "m"= +1/2
Over all is 3pz
The early atmosphere was probably mostly carbon dioxide, with little or no oxygen. <span>The proportion of oxygen went up because of </span>photosynthesis. The photosynthesis was conducted from <span>tiny organisms.
</span><span>cyanobacteria, or blue-green algae. </span><span>
They </span>used sunshine, water and carbon dioxide to produce carbohydrates and, yes, oxygen. This change to the atmosphere was very important because the <span>breathable air we enjoy today was created.</span>
Answer:
The mass number is defined as the total number of protons and neutrons in an atom.
Explanation:
Answer:3.6 I think sorry if wrong
Explanation:
90 divided by 25