Answer:
0.16joules
Explanation:
Using the relation for The gravitational potential energy
E= Mgh
Where,
E= Potential energy
h = Vertical Height
M = mass
g = Gravitational Field Strength
To find the vertical component of angle of launch Where the angle is 22°
h= sin theta
So E = mghsintheta
= 0.18 x 0.98 x 0.253 sin22
=0.16joules
Explanation:
If the lightbulb A in the circuit shown in the image burned out, the path for the current to flow is disrupted because one of its terminals is connected direct to the source. So, there will be no current through the lightbulbs B, C, and D, and they will turn off. Similarly it will happen, if the lightbulb D burned out.
If the lightbulb B burned out the current will continue circulating through the lightbulbs A, C, and D, because lightbulb B is connected in parallel. Similarly it will happen, if the lightbulb C burned out.
Answer:
3MgCl2 has 9 atoms.
Explanation:
The Element Magnesium (Mg) has 3 atoms.
The Element Chloride (Cl) has 6 attoms.
Their fore 6 + 3 is 9 of course. 3MgCl2 has 9 atoms.
BTW: 3MgCl2 is a molecular compound as well as H2O and CO2.
Answer:
0.36 A.
Explanation:
We'll begin by calculating the equivalent resistance between 35 Ω and 20 Ω resistor. This is illustrated below:
Resistor 1 (R₁) = 35 Ω
Resistor 2 (R₂) = 20 Ω
Equivalent Resistance (Rₑq) =?
Since, the two resistors are in parallel connections, their equivalence can be obtained as follow:
Rₑq = (R₁ × R₂) / (R₁ + R₂)
Rₑq = (35 × 20) / (35 + 20)
Rₑq = 700 / 55
Rₑq = 12.73 Ω
Next, we shall determine the total resistance in the circuit. This can be obtained as follow:
Equivalent resistance between 35 Ω and 20 Ω (Rₑq) = 12.73 Ω
Resistor 3 (R₃) = 15 Ω
Total resistance (R) in the circuit =?
R = Rₑq + R₃ (they are in series connection)
R = 12.73 + 15
R = 27.73 Ω
Finally, we shall determine the current. This can be obtained as follow:
Total resistance (R) = 27.73 Ω
Voltage (V) = 10 V
Current (I) =?
V = IR
10 = I × 27.73
Divide both side by 27.73
I = 10 / 27.73
I = 0.36 A
Therefore, the current is 0.36 A.