1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
4 years ago
15

the planet neptune is approximately 4.5*10^9 kilometers from the sun. The planet Venus is approximately 1.1*10^8 kilometers from

the sun. Which is the best estimate of how many times as far from the sun Neptune is as Venus?
Physics
1 answer:
Firlakuza [10]4 years ago
7 0

Answer:

Neptune is approximately 41 times as far from the sun as Venus

Explanation:

Estimate = distance of Neptune from the sun ÷ distance of Venus from the sun = 4.5×10^9 ÷ 1.18×10^8 = 40.9 (approximately 41)

You might be interested in
Newton's Laws
Sergio [31]

Answer:They are equal and act in opposite directions.

Explanation:Newton's third law of motion states that for every action there is an equal and opposite reaction. In the case of Bode's rocket, the pressurized air in the bottle forces the water to gush downward out of the bottle, causing the rocket to launch upward into the air. The force of the water gushing downward is equal to the upward force on the rocket. So, the two forces are equal and act in opposite directions.

3 0
3 years ago
What color will a yellow banana appear when illuminated by yellow light
Phantasy [73]

Answer:

A yellow banana reflects only yellow light,

Explanation:

3 0
3 years ago
Interactive Solution 6.39 presents a model for solving this problem. A slingshot fires a pebble from the top of a building at a
mariarad [96]

(a) 29.8 m/s

To solve this problem, we start by analyze the vertical motion first. This is a free fall motion, so we can use the following suvat equation:

v_y^2 - u_y^2 = 2as

where, taking upward as positive direction:

v_y is the final vertical velocity

u_y = 0 is the initial vertical velocity (zero because the pebble is launched horizontally)

a=g=-9.8 m/s^2 is the acceleration of gravity

s = -25.0 m is the displacement

Solving for vy,

v_y = \sqrt{u^2+2as}=\sqrt{0+2(-9.8)(-25)}=-22.1 m/s (downward, so we take the negative solution)

The pebble also have a horizontal component of the velocity, which remains constant during the whole motion, so it is

v_x = 20.0 m/s

So, the final speed of the pebble as it strikes the ground is

v=\sqrt{v_x^2+v_y^2}=\sqrt{20.0^2+(-22.1)^2}=29.8 m/s

(b) 29.8 m/s

In this case, the pebble is launched straight up, so its initial vertical velocity is

u_y = 20.0 m/s

So we can find the final vertical velocity using the same suvat equation as before:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

The horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

(c) 29.8 m/s

This case is similarly to the previous one: the only difference here is that the pebble is launched straight down instead than up, therefore

u_y = -20.0 m/s

Using again the same suvat equation:

v_y^2 - u_y^2 = 2as

v_y = \sqrt{u^2+2as}=\sqrt{(-20.0)^2+2(-9.8)(-25)}=-29.8 m/s (downward, so we take the negative solution)

As before, the horizontal speed instead is zero, since the pebble is initially launched vertically, so the final speed is just equal to the magnitude of the vertical velocity:

v = 29.8 m/s

We notice that the final value of the speed is always the same in all the three parts, so it does not depend on the direction of launching. This is due to the law of conservation of energy: in fact, the initial mechanical energy of the pebble (kinetic+potential) is the same in all three cases (because the height h does not change, and the speed v does not change either), and the kinetic energy gained during the fall is also the same (since the pebble falls the same distance in all 3 cases), therefore the final speed must also be the same.

7 0
3 years ago
What is the time constant of a series circuit where the capacitor is 0.330μF and the resistor is 10Ω ?
PtichkaEL [24]

Answer:

\tau=3.3*10^{-6}s

Explanation:

Take at look to the picture I attached you, using Kirchhoff's current law we get:

C*\frac{dV}{dt}+\frac{V}{R}=0

This is a separable first order differential equation, let's solve it step by step:

Express the equation this way:

\frac{dV}{V}=-\frac{1}{RC}dt

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

\int\limits^V_v {\frac{dV}{V} } =-\int\limits^t_0 {\frac{1}{RC} } \, dt

Evaluating the integrals:

ln(\frac{V}{v})=e^{\frac{-t}{RC} }

natural logarithm to both sides in order to isolate V:

V(t)=ve^{-\frac{t}{RC} }

Where the term RC is called time constant and is given by:

\tau=R*C=10*(0.330*10^{-6})=3.3*10^{-6}s

3 0
3 years ago
A body is moving with a uniform acceleration of 2m/s² what does it mean?​
Nastasia [14]

Answer:

the body has energy due to its constant motion. it means it moves in a uniform acceleration which has zero velocity

Explanation:

Uniform or constant acceleration is a type of motion in which the velocity of an object changes by an equal amount in every equal time period.

7 0
3 years ago
Other questions:
  • Games in Space: On Earth, an astronaut throws a ball straight upward, and it stays in the air for a total of 3.0s before they ca
    12·1 answer
  • The temperature of a balloon is lowered with liquid nitrogen. The balloon appears to deflate because the
    13·1 answer
  • If a sprinter’s mass is 60 kg, how much forward force must be exerted on the sprinter to make the sprinter accelerate at 0.8 m/s
    12·2 answers
  • True or False. If a desk is pushed at a
    13·1 answer
  • a car is rolling backward when it hits the gas. after 8.25 s it is moving forward at 8.62m/s, and is 12.9m to the right of its s
    15·2 answers
  • A 250 GeV beam of protons is fired over a distance of 1 km. If the initial size of the wave packet is 1 mm, find its final size
    15·1 answer
  • A 0.800-kg ball is tied to the end of a string 1.60 m long and swung in a vertical circle. (a)During one complete circle, starti
    7·1 answer
  • What is polarization. How can we remove it?
    12·1 answer
  • Which of the following is a pure substance?
    10·2 answers
  • A Gaussian surface in the form of a hemisphere of radius R = 3.04 cm lies in a uniform electric field of magnitude E = 1.64 N/C.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!