Answer:
v₁ = 37.5 cm / s
Explanation:
For this exercise we can use that angular and linear velocity are related
v = w r
in the case of the spool the angular velocity for the whole system is constant,
They indicate the linear velocity v₀ = 25.0 cm / s for a radius of r₀ = 1.00 cm,
w = v₀ /r₀
for the outside of the spool r₁ = 1.5 cm
w = v₁ / r₁1
since the angular velocity is the same we set the two expressions equal
v1 =
let's calculate
v₁ =
v₁ = 37.5 cm / s
Well, Air resistance is a special type of friction (you cannot classify it in other categories). That force of air-resistance is often observed to oppose the motion of the object,( like every other frictional forces)
Hope this helps!
Answer:
the energy of the spring at the start is 400 J.
Explanation:
Given;
mass of the box, m = 8.0 kg
final speed of the box, v = 10 m/s
Apply the principle of conservation of energy to determine the energy of the spring at the start;
Final Kinetic energy of the box = initial elastic potential energy of the spring
K.E = Ux
¹/₂mv² = Ux
¹/₂ x 8 x 10² = Ux
400 J = Ux
Therefore, the energy of the spring at the start is 400 J.
Answer:
t = 5 hr
Explanation:
Let kali moves toward east with velocity= V₁= 40 km/ h
Mat moves toward west with velocity = V₂= 50 km/hr
As Klai left one hour earlier = t₁= 1 hr
distance traveled in 1st hour = s₁ = v * t = 40 * 1 = 40 km
Remaining distance = 400 - 40 = 360 km
As they move in the opposite directions:
Relative speed= 40 + 50 = 90 km/ h
s = v * t
⇒ t = s / v
⇒ t₂ = 360 / 90
⇒ t₂ = 4 hr
Total time = t = t₁ + t₂
t = 1 hr + 4 hr
t = 5 hr