Answer:
They are separated by a distance of 18 m. Find the gravitational attraction between them. r= 1 m r= 1 m 18 m. Mass = 1.5 kg. Mass = 8.5 kg.
The shot putter should get out of the way before the ball returns to the launch position.
Assume that the launch height is the reference height of zero.
u = 11.0 m/s, upward launch velocity.
g = 9.8 m/s², acceleration due to gravity.
The time when the ball is at the reference position (of zero) is given by
ut - (1/2)gt² = 0
11t - 0.5*9.8t² = 0
t(11 - 4.9t) = 0
t = 0 or t = 4.9/11 = 0.45 s
t = 0 corresponds to when the ball is launched.
t = 0.45 corresponds to when the ball returns to the launch position.
Answer: 0.45 s
1.Landslide 2. Delta 3. Moving water 4. Erosion 5. Abrasion and Deflation
6. Winds 8. Sediment it can erode
Sorry, don't know 7.
The work done on the filled bucket in raising out of the hole is 2, 925 Joules
<h3>How to determine the work done</h3>
Using the formula:
Work done = force * distance
Note that force = mass * acceleration
F = mg + ma
F = 4. 5 * 10 + 28 * 10
F = 45 + 280
F = 325 Newton
Distance = 9m
Substitute into formula
Work done = 325 * 9
Work done = 2, 925 Joules
Therefore, the work done is 2, 925 Joules
Learn more about work done here:
brainly.com/question/25573309
#SPJ1
Well idk if this helps but the formula to solve acceleration is
a=F/m=(100kg)=1.0m/s 2