Water, <span>rusts a nail faster</span>
Answer:
A typical organic molecule that contains carbon hydrogen oxygen nitrogen and sulfur will be an amino acid.
Explanation:
Amino acid is the basic protein unit composed of the amino group, carboxylic group, and an alkyl group (which is specific for every amino acid). The R group or alkyl group is what gives the amino acid its identity. For example, the amino acid will be glycine if a Hydrogen atom is attached in place of the R group, and alanine if somehow the R group is replaced by a methyl group. Cystine is a typical example of an amino acid in which carbon, hydrogen oxygen, nitrogen, and sulfur are present. The structure of cystine is given below.
You can also get help from the following answer:
brainly.com/question/14583479
#SPJ4
Answer:

Explanation:
We want to convert from moles to grams, so we must use the molar mass.
<h3>1. Molar Mass</h3>
The molar mass is the mass of 1 mole of a substance. It is the same as the atomic masses on the Periodic Table, but the units are grams per mole (g/mol) instead of atomic mass units (amu).
We are given the compound PI₃ or phosphorus triiodide. Look up the molar masses of the individual elements.
- Phosphorus (P): 30.973762 g/mol
- Iodine (I): 126.9045 g/mol
Note that there is a subscript of 3 after the I in the formula. This means there are 3 moles of iodine in 1 mole of the compound PI₃. We should multiply iodine's molar mass by 3, then add phosphorus's molar mass.
- I₃: 126.9045 * 3=380.7135 g/mol
- PI₃: 30.973762 + 380.7135 = 411.687262 g/mol
<h3>2. Convert Moles to Grams</h3>
Use the molar mass as a ratio.

We want to convert 3.14 moles to grams, so we multiply by that value.

The units of moles of PI₃ cancel.


<h3>3. Round</h3>
The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we calculated, that is the tens place.
The 2 in the ones place tells us to leave the 9.

3.14 moles of phosphorous triiodide is approximately equal to <u>1290 grams of phosphorus triodide.</u>
Elements because elements make up atoms which make up everything