Answer: Productivity increases when inputs and outputs increase proportionately.
Explanation:
Productivity increases when inputs and outputs increase proportionately. Input has to be directly proportional to output to be productive. This means increase in input to a system must leads to drastic increase in the output. When the output is not balanced with the amount of input, it leads to unproductivity.
Being productive can be business wise or in terms if personal growth and development.
Answer:
The velocity of mass 2m is 
Explanation:
From the question w are told that
The mass of the billiard ball A is =m
The initial speed of the billiard ball A =
=1 m/s
The mass of the billiard ball B is = 2 m
The initial speed of the billiard ball B = 0
Let the final speed of the billiard ball A = 
Let The finial speed of the billiard ball B = 
According to the law of conservation of Energy

Substituting values

Multiplying through by 

According to the law of conservation of Momentum

Substituting values

Multiplying through by 

making
subject of the equation 2

Substituting this into equation 1




Multiplying through by 



When the object is moving in the elliptical orbit, it means that the direction of its acceleration should be towards the two foci (plural of focus) of the ellipse to keep the elliptical motion. As force according to the Newton's second law: F = ma, the net force must be in the direction of the acceleration. As far as the magnitude of net force is concerned, you can use Newton's gravitational law to find its magnitude.
At the point of maximum displacement (a), the elastic potential energy of the spring is maximum:

while the kinetic energy is zero, because at the maximum displacement the mass is stationary, so its velocity is zero:

And the total energy of the system is

Viceversa, when the mass reaches the equilibrium position, the elastic potential energy is zero because the displacement x is zero:

while the mass is moving at speed v, and therefore the kinetic energy is

And the total energy is

For the law of conservation of energy, the total energy must be conserved, therefore

. So we can write

that we can solve to find an expression for v:
Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.