Answer:
e. design programming
Explanation:
The planning techniques are responsible for structuring the tasks to be performed within the project, defining the duration and the order of execution of the same, while the programming techniques try to organize the activities so that the logical temporal relationships between them, determining the calendar or the moments of time in which each one must be realized. The programming must be consistent with the objectives pursued and respect existing restrictions (resources, costs, workloads).
The programming therefore consists in setting, in an approximate way, the moments of beginning and termination of each activity. Some activities may have slack and others are critical activities (fixed over time).
STEPS:
Build a time diagram (moments of beginning and slack of activities).
Establish the times of each activity.
Analyze project costs and adjust clearances (minimum cost project).
Answer:

Explanation:
By Snell's law we know at the left surface




now we have


now on the other surface we know that
angle of incidence = 

so again we have

so we have


also we know that


By solving above equation we have

Answer:
An ultra intense laser is one with which intensities greater than 1015 W cm-2 can be achieved.
Explanation:
This intensity, which was the upper limit of lasers until the invention of the Chirped Pulse Amplification, CPA technique, is the value around which nonlinear effects on the transport of radiation in materials begin to appear.
Currently, the most powerful lasers reach intensities of the order of 1021W cm-2 and powers of Petawatts, PW, in each pulse. This range of intensities has opened the door for lasers to a multitude of disciplines and scientific areas traditionally reserved for accelerators and nuclear reactors, applying as generators of high-energy electron, ion, neutron and photon beams, without the need for expensive infrastructure.
this is basically the same as volume, no?
So, 5.345*4.128*3.859=85.145
Answer:
Explanation:
Given,
initial angular speed, ω = 3,700 rev/min
=
final angular speed = 0 rad/s
Number of time it rotates= 46 times
angular displacement, θ = 2π x 46 = 92 π
Angular acceleration


