An atom of carbon has 4 electrons in its outermost shell, which means that
<span>its ionic charge is 4+ or 4-
</span>Si is in same group as carbon so its also 4+ or 4-
Germanium is 4+.
Sn is also 2+ or 4+
Pb is usually +2
Answer:
Q = 233.42 J
Explanation:
Given data:
Mass of lead = 175 g
Initial temperature = 125.0°C
Final temperature = 22.0°C
Specific heat capacity of lead = 0.01295 J/g.°C
Heat absorbed by water = ?
Solution:
Heat absorbed by water is actually the heat lost by the metal.
Thus, we will calculate the heat lost by metal.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
ΔT = T2 - T1
ΔT = 22.0°C - 125.0°C
ΔT = -103°C
Q = 175 g × 0.01295 J/g.°C×-103°C
Q = -233.42 J
Heat absorbed by the water is 233.42 J.
FeS is an example of an ionic compound as in the formula there is a metal of Fe iron chemically bonded to the nonmetal S sulphur. Resulting in a strong electrostatic attraction due to the transfer of valence electrons from the iron to the Sulphur.
Answer:
108 kPa
Step-by-step explanation:
To solve this problem, we can use the <em>Combined Gas Laws</em>:
p₁V₁/T₁ = p₂V₂/T₂ Multiply each side by T₁
p₁V₁ = p₂V₂ × T₁/T₂ Divide each side by V₁
p₁ = p₂ × V₂/V₁ × T₁/T₂
Data:
p₁ = ?; V₁ = 34.3 L; T₁ = 31.5 °C
p₂ = 122.2 kPa; V₂ = 29.2 L; T₂ = 21.0 °C
Calculations:
(a) Convert temperatures to <em>kelvins
</em>
T₁ = (31.5 + 273.15) K = 304.65 K
T₂ = (21.0 + 273.15) K = 294.15 K
(b) Calculate the <em>pressure
</em>
p₁ = 122.2 kPa × (29.2/34.3) × (304.65/294.15)
= 122.2 kPa × 0.8542 × 1.0357
= 108 kPa
Answer is: <span>the molarity of the diluted solution 0,454 M.
</span>V₁(NaOH) = 100 mL ÷ 1000 mL/L = 0,1 L.
c₁(NaOH) = 0,75 M = 0,75 mol/L.
n₁(NaOH) = c₁(NaOH) · V₁(NaOH).
n₁(NaOH) = 0,75 mol/L · 0,1 L.
n₁(NaOH) = 0,075 mol
n₂(NaOH) = n₁(NaOH) = 0,075 mol.
V₂(NaOH) = 165 mL ÷ 1000 mL/L = 0,165 L.
c₂(NaOH) = n₂(NaOH) ÷ V₂(NaOH).
c₂(NaOH) = 0,075 mol ÷ 0,165 L.
c₂(NaOH) = 0,454 mol/L.