The change in kinetic energy of the car is equivalent to the change in its potential energy. Thus:
K.E = P.E
1/2 x mΔv² = mgΔh
h = (8.2² - 5²) / 2(9.81)
h = 2.15 meters
Answer:
In the - j direction, that is negative of the y-axis
Explanation:
As typed in the question, the position of the object is given by the expression in three component ( i, j, k) form:
r (t) = 5 i - (t + 1 ) j + t^3 k
and since the velocity is the derivative of position with respect to time, by doing the derivative of this expression we get:
v(t) = 0 i - 1 j +3 t^2 k
which for the initial velocity requested (that is at time zero) we have:
v(t) = 0 i - 1 j +3 (0)^2 k = = 1 j
Then the direction of the initial velocity is entirely in the direction of the j versor, that is pointing to the negative of the y-axis.
Answer:
light scattering by particles in a colloid or in a very fine suspension
<span>Air is a mix of gases that is composed out of about 1/5 oxygen and 4/5 nitrogen. Though air is made up of mostly nitrogen and oxygen, it also contains traces of water vapor, argon, carbon dioxide and other substances.</span>
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of Maxwell.